|
import scipy |
|
from scipy import linalg |
|
from torch.nn import functional as F |
|
import torch |
|
from torch import nn |
|
import numpy as np |
|
|
|
import modules.audio2motion.utils as utils |
|
from modules.audio2motion.transformer_models import FFTBlocks |
|
from utils.commons.hparams import hparams |
|
|
|
|
|
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): |
|
n_channels_int = n_channels[0] |
|
in_act = input_a + input_b |
|
t_act = torch.tanh(in_act[:, :n_channels_int, :]) |
|
s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) |
|
acts = t_act * s_act |
|
return acts |
|
|
|
class WN(torch.nn.Module): |
|
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, |
|
p_dropout=0, share_cond_layers=False): |
|
super(WN, self).__init__() |
|
assert (kernel_size % 2 == 1) |
|
assert (hidden_channels % 2 == 0) |
|
self.hidden_channels = hidden_channels |
|
self.kernel_size = kernel_size |
|
self.dilation_rate = dilation_rate |
|
self.n_layers = n_layers |
|
self.gin_channels = gin_channels |
|
self.p_dropout = p_dropout |
|
self.share_cond_layers = share_cond_layers |
|
|
|
self.in_layers = torch.nn.ModuleList() |
|
self.res_skip_layers = torch.nn.ModuleList() |
|
|
|
self.drop = nn.Dropout(p_dropout) |
|
|
|
self.use_adapters = hparams.get("use_adapters", False) |
|
if self.use_adapters: |
|
self.adapter_layers = torch.nn.ModuleList() |
|
|
|
if gin_channels != 0 and not share_cond_layers: |
|
cond_layer = torch.nn.Conv1d(gin_channels, 2 * hidden_channels * n_layers, 1) |
|
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight') |
|
|
|
for i in range(n_layers): |
|
dilation = dilation_rate ** i |
|
padding = int((kernel_size * dilation - dilation) / 2) |
|
in_layer = torch.nn.Conv1d(hidden_channels, 2 * hidden_channels, kernel_size, |
|
dilation=dilation, padding=padding) |
|
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight') |
|
self.in_layers.append(in_layer) |
|
|
|
|
|
if i < n_layers - 1: |
|
res_skip_channels = 2 * hidden_channels |
|
else: |
|
res_skip_channels = hidden_channels |
|
|
|
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1) |
|
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight') |
|
self.res_skip_layers.append(res_skip_layer) |
|
|
|
if self.use_adapters: |
|
adapter_layer = MlpAdapter(in_out_dim=res_skip_channels, hid_dim=res_skip_channels//4) |
|
self.adapter_layers.append(adapter_layer) |
|
|
|
def forward(self, x, x_mask=None, g=None, **kwargs): |
|
output = torch.zeros_like(x) |
|
n_channels_tensor = torch.IntTensor([self.hidden_channels]) |
|
|
|
if g is not None and not self.share_cond_layers: |
|
g = self.cond_layer(g) |
|
|
|
for i in range(self.n_layers): |
|
x_in = self.in_layers[i](x) |
|
x_in = self.drop(x_in) |
|
if g is not None: |
|
cond_offset = i * 2 * self.hidden_channels |
|
g_l = g[:, cond_offset:cond_offset + 2 * self.hidden_channels, :] |
|
else: |
|
g_l = torch.zeros_like(x_in) |
|
|
|
acts = fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor) |
|
|
|
res_skip_acts = self.res_skip_layers[i](acts) |
|
if self.use_adapters: |
|
res_skip_acts = self.adapter_layers[i](res_skip_acts.transpose(1,2)).transpose(1,2) |
|
if i < self.n_layers - 1: |
|
x = (x + res_skip_acts[:, :self.hidden_channels, :]) * x_mask |
|
output = output + res_skip_acts[:, self.hidden_channels:, :] |
|
else: |
|
output = output + res_skip_acts |
|
return output * x_mask |
|
|
|
def remove_weight_norm(self): |
|
def remove_weight_norm(m): |
|
try: |
|
nn.utils.remove_weight_norm(m) |
|
except ValueError: |
|
return |
|
|
|
self.apply(remove_weight_norm) |
|
|
|
def enable_adapters(self): |
|
if not self.use_adapters: |
|
return |
|
for adapter_layer in self.adapter_layers: |
|
adapter_layer.enable() |
|
|
|
def disable_adapters(self): |
|
if not self.use_adapters: |
|
return |
|
for adapter_layer in self.adapter_layers: |
|
adapter_layer.disable() |
|
|
|
class Permute(nn.Module): |
|
def __init__(self, *args): |
|
super(Permute, self).__init__() |
|
self.args = args |
|
|
|
def forward(self, x): |
|
return x.permute(self.args) |
|
|
|
|
|
class LayerNorm(nn.Module): |
|
def __init__(self, channels, eps=1e-4): |
|
super().__init__() |
|
self.channels = channels |
|
self.eps = eps |
|
|
|
self.gamma = nn.Parameter(torch.ones(channels)) |
|
self.beta = nn.Parameter(torch.zeros(channels)) |
|
|
|
def forward(self, x): |
|
n_dims = len(x.shape) |
|
mean = torch.mean(x, 1, keepdim=True) |
|
variance = torch.mean((x - mean) ** 2, 1, keepdim=True) |
|
|
|
x = (x - mean) * torch.rsqrt(variance + self.eps) |
|
|
|
shape = [1, -1] + [1] * (n_dims - 2) |
|
x = x * self.gamma.view(*shape) + self.beta.view(*shape) |
|
return x |
|
|
|
|
|
class ConvReluNorm(nn.Module): |
|
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.hidden_channels = hidden_channels |
|
self.out_channels = out_channels |
|
self.kernel_size = kernel_size |
|
self.n_layers = n_layers |
|
self.p_dropout = p_dropout |
|
assert n_layers > 1, "Number of layers should be larger than 0." |
|
|
|
self.conv_layers = nn.ModuleList() |
|
self.norm_layers = nn.ModuleList() |
|
self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size // 2)) |
|
self.norm_layers.append(LayerNorm(hidden_channels)) |
|
self.relu_drop = nn.Sequential( |
|
nn.ReLU(), |
|
nn.Dropout(p_dropout)) |
|
for _ in range(n_layers - 1): |
|
self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2)) |
|
self.norm_layers.append(LayerNorm(hidden_channels)) |
|
self.proj = nn.Conv1d(hidden_channels, out_channels, 1) |
|
self.proj.weight.data.zero_() |
|
self.proj.bias.data.zero_() |
|
|
|
def forward(self, x, x_mask): |
|
x_org = x |
|
for i in range(self.n_layers): |
|
x = self.conv_layers[i](x * x_mask) |
|
x = self.norm_layers[i](x) |
|
x = self.relu_drop(x) |
|
x = x_org + self.proj(x) |
|
return x * x_mask |
|
|
|
|
|
|
|
class ActNorm(nn.Module): |
|
def __init__(self, channels, ddi=False, **kwargs): |
|
super().__init__() |
|
self.channels = channels |
|
self.initialized = not ddi |
|
|
|
self.logs = nn.Parameter(torch.zeros(1, channels, 1)) |
|
self.bias = nn.Parameter(torch.zeros(1, channels, 1)) |
|
|
|
def forward(self, x, x_mask=None, reverse=False, **kwargs): |
|
if x_mask is None: |
|
x_mask = torch.ones(x.size(0), 1, x.size(2)).to(device=x.device, dtype=x.dtype) |
|
x_len = torch.sum(x_mask, [1, 2]) |
|
if not self.initialized: |
|
self.initialize(x, x_mask) |
|
self.initialized = True |
|
|
|
if reverse: |
|
z = (x - self.bias) * torch.exp(-self.logs) * x_mask |
|
logdet = torch.sum(-self.logs) * x_len |
|
else: |
|
z = (self.bias + torch.exp(self.logs) * x) * x_mask |
|
logdet = torch.sum(self.logs) * x_len |
|
return z, logdet |
|
|
|
def store_inverse(self): |
|
pass |
|
|
|
def set_ddi(self, ddi): |
|
self.initialized = not ddi |
|
|
|
def initialize(self, x, x_mask): |
|
with torch.no_grad(): |
|
denom = torch.sum(x_mask, [0, 2]) |
|
m = torch.sum(x * x_mask, [0, 2]) / denom |
|
m_sq = torch.sum(x * x * x_mask, [0, 2]) / denom |
|
v = m_sq - (m ** 2) |
|
logs = 0.5 * torch.log(torch.clamp_min(v, 1e-6)) |
|
|
|
bias_init = (-m * torch.exp(-logs)).view(*self.bias.shape).to(dtype=self.bias.dtype) |
|
logs_init = (-logs).view(*self.logs.shape).to(dtype=self.logs.dtype) |
|
|
|
self.bias.data.copy_(bias_init) |
|
self.logs.data.copy_(logs_init) |
|
|
|
|
|
class InvConvNear(nn.Module): |
|
def __init__(self, channels, n_split=4, no_jacobian=False, lu=True, n_sqz=2, **kwargs): |
|
super().__init__() |
|
assert (n_split % 2 == 0) |
|
self.channels = channels |
|
self.n_split = n_split |
|
self.n_sqz = n_sqz |
|
self.no_jacobian = no_jacobian |
|
|
|
w_init = torch.qr(torch.FloatTensor(self.n_split, self.n_split).normal_())[0] |
|
if torch.det(w_init) < 0: |
|
w_init[:, 0] = -1 * w_init[:, 0] |
|
self.lu = lu |
|
if lu: |
|
|
|
np_p, np_l, np_u = linalg.lu(w_init) |
|
np_s = np.diag(np_u) |
|
np_sign_s = np.sign(np_s) |
|
np_log_s = np.log(np.abs(np_s)) |
|
np_u = np.triu(np_u, k=1) |
|
l_mask = np.tril(np.ones(w_init.shape, dtype=float), -1) |
|
eye = np.eye(*w_init.shape, dtype=float) |
|
|
|
self.register_buffer('p', torch.Tensor(np_p.astype(float))) |
|
self.register_buffer('sign_s', torch.Tensor(np_sign_s.astype(float))) |
|
self.l = nn.Parameter(torch.Tensor(np_l.astype(float)), requires_grad=True) |
|
self.log_s = nn.Parameter(torch.Tensor(np_log_s.astype(float)), requires_grad=True) |
|
self.u = nn.Parameter(torch.Tensor(np_u.astype(float)), requires_grad=True) |
|
self.register_buffer('l_mask', torch.Tensor(l_mask)) |
|
self.register_buffer('eye', torch.Tensor(eye)) |
|
else: |
|
self.weight = nn.Parameter(w_init) |
|
|
|
def forward(self, x, x_mask=None, reverse=False, **kwargs): |
|
b, c, t = x.size() |
|
assert (c % self.n_split == 0) |
|
if x_mask is None: |
|
x_mask = 1 |
|
x_len = torch.ones((b,), dtype=x.dtype, device=x.device) * t |
|
else: |
|
x_len = torch.sum(x_mask, [1, 2]) |
|
|
|
x = x.view(b, self.n_sqz, c // self.n_split, self.n_split // self.n_sqz, t) |
|
x = x.permute(0, 1, 3, 2, 4).contiguous().view(b, self.n_split, c // self.n_split, t) |
|
|
|
if self.lu: |
|
self.weight, log_s = self._get_weight() |
|
logdet = log_s.sum() |
|
logdet = logdet * (c / self.n_split) * x_len |
|
else: |
|
logdet = torch.logdet(self.weight) * (c / self.n_split) * x_len |
|
|
|
if reverse: |
|
if hasattr(self, "weight_inv"): |
|
weight = self.weight_inv |
|
else: |
|
weight = torch.inverse(self.weight.float()).to(dtype=self.weight.dtype) |
|
logdet = -logdet |
|
else: |
|
weight = self.weight |
|
if self.no_jacobian: |
|
logdet = 0 |
|
|
|
weight = weight.view(self.n_split, self.n_split, 1, 1) |
|
z = F.conv2d(x, weight) |
|
|
|
z = z.view(b, self.n_sqz, self.n_split // self.n_sqz, c // self.n_split, t) |
|
z = z.permute(0, 1, 3, 2, 4).contiguous().view(b, c, t) * x_mask |
|
return z, logdet |
|
|
|
def _get_weight(self): |
|
l, log_s, u = self.l, self.log_s, self.u |
|
l = l * self.l_mask + self.eye |
|
u = u * self.l_mask.transpose(0, 1).contiguous() + torch.diag(self.sign_s * torch.exp(log_s)) |
|
weight = torch.matmul(self.p, torch.matmul(l, u)) |
|
return weight, log_s |
|
|
|
def store_inverse(self): |
|
weight, _ = self._get_weight() |
|
self.weight_inv = torch.inverse(weight.float()).to(next(self.parameters()).device) |
|
|
|
|
|
class InvConv(nn.Module): |
|
def __init__(self, channels, no_jacobian=False, lu=True, **kwargs): |
|
super().__init__() |
|
w_shape = [channels, channels] |
|
w_init = np.linalg.qr(np.random.randn(*w_shape))[0].astype(float) |
|
LU_decomposed = lu |
|
if not LU_decomposed: |
|
|
|
self.register_parameter("weight", nn.Parameter(torch.Tensor(w_init))) |
|
else: |
|
np_p, np_l, np_u = linalg.lu(w_init) |
|
np_s = np.diag(np_u) |
|
np_sign_s = np.sign(np_s) |
|
np_log_s = np.log(np.abs(np_s)) |
|
np_u = np.triu(np_u, k=1) |
|
l_mask = np.tril(np.ones(w_shape, dtype=float), -1) |
|
eye = np.eye(*w_shape, dtype=float) |
|
|
|
self.register_buffer('p', torch.Tensor(np_p.astype(float))) |
|
self.register_buffer('sign_s', torch.Tensor(np_sign_s.astype(float))) |
|
self.l = nn.Parameter(torch.Tensor(np_l.astype(float))) |
|
self.log_s = nn.Parameter(torch.Tensor(np_log_s.astype(float))) |
|
self.u = nn.Parameter(torch.Tensor(np_u.astype(float))) |
|
self.l_mask = torch.Tensor(l_mask) |
|
self.eye = torch.Tensor(eye) |
|
self.w_shape = w_shape |
|
self.LU = LU_decomposed |
|
self.weight = None |
|
|
|
def get_weight(self, device, reverse): |
|
w_shape = self.w_shape |
|
self.p = self.p.to(device) |
|
self.sign_s = self.sign_s.to(device) |
|
self.l_mask = self.l_mask.to(device) |
|
self.eye = self.eye.to(device) |
|
l = self.l * self.l_mask + self.eye |
|
u = self.u * self.l_mask.transpose(0, 1).contiguous() + torch.diag(self.sign_s * torch.exp(self.log_s)) |
|
dlogdet = self.log_s.sum() |
|
if not reverse: |
|
w = torch.matmul(self.p, torch.matmul(l, u)) |
|
else: |
|
l = torch.inverse(l.double()).float() |
|
u = torch.inverse(u.double()).float() |
|
w = torch.matmul(u, torch.matmul(l, self.p.inverse())) |
|
return w.view(w_shape[0], w_shape[1], 1), dlogdet |
|
|
|
def forward(self, x, x_mask=None, reverse=False, **kwargs): |
|
""" |
|
log-det = log|abs(|W|)| * pixels |
|
""" |
|
b, c, t = x.size() |
|
if x_mask is None: |
|
x_len = torch.ones((b,), dtype=x.dtype, device=x.device) * t |
|
else: |
|
x_len = torch.sum(x_mask, [1, 2]) |
|
logdet = 0 |
|
if not reverse: |
|
weight, dlogdet = self.get_weight(x.device, reverse) |
|
z = F.conv1d(x, weight) |
|
if logdet is not None: |
|
logdet = logdet + dlogdet * x_len |
|
return z, logdet |
|
else: |
|
if self.weight is None: |
|
weight, dlogdet = self.get_weight(x.device, reverse) |
|
else: |
|
weight, dlogdet = self.weight, self.dlogdet |
|
z = F.conv1d(x, weight) |
|
if logdet is not None: |
|
logdet = logdet - dlogdet * x_len |
|
return z, logdet |
|
|
|
def store_inverse(self): |
|
self.weight, self.dlogdet = self.get_weight('cuda', reverse=True) |
|
|
|
|
|
class Flip(nn.Module): |
|
def forward(self, x, *args, reverse=False, **kwargs): |
|
x = torch.flip(x, [1]) |
|
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device) |
|
return x, logdet |
|
|
|
def store_inverse(self): |
|
pass |
|
|
|
|
|
class CouplingBlock(nn.Module): |
|
def __init__(self, in_channels, hidden_channels, kernel_size, dilation_rate, n_layers, |
|
gin_channels=0, p_dropout=0, sigmoid_scale=False, |
|
share_cond_layers=False, wn=None): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.hidden_channels = hidden_channels |
|
self.kernel_size = kernel_size |
|
self.dilation_rate = dilation_rate |
|
self.n_layers = n_layers |
|
self.gin_channels = gin_channels |
|
self.p_dropout = p_dropout |
|
self.sigmoid_scale = sigmoid_scale |
|
|
|
start = torch.nn.Conv1d(in_channels // 2, hidden_channels, 1) |
|
start = torch.nn.utils.weight_norm(start) |
|
self.start = start |
|
|
|
|
|
end = torch.nn.Conv1d(hidden_channels, in_channels, 1) |
|
end.weight.data.zero_() |
|
end.bias.data.zero_() |
|
self.end = end |
|
self.wn = WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels, |
|
p_dropout, share_cond_layers) |
|
if wn is not None: |
|
self.wn.in_layers = wn.in_layers |
|
self.wn.res_skip_layers = wn.res_skip_layers |
|
|
|
def forward(self, x, x_mask=None, reverse=False, g=None, **kwargs): |
|
if x_mask is None: |
|
x_mask = 1 |
|
x_0, x_1 = x[:, :self.in_channels // 2], x[:, self.in_channels // 2:] |
|
|
|
x = self.start(x_0) * x_mask |
|
x = self.wn(x, x_mask, g) |
|
out = self.end(x) |
|
|
|
z_0 = x_0 |
|
m = out[:, :self.in_channels // 2, :] |
|
logs = out[:, self.in_channels // 2:, :] |
|
if self.sigmoid_scale: |
|
logs = torch.log(1e-6 + torch.sigmoid(logs + 2)) |
|
if reverse: |
|
z_1 = (x_1 - m) * torch.exp(-logs) * x_mask |
|
logdet = torch.sum(-logs * x_mask, [1, 2]) |
|
else: |
|
z_1 = (m + torch.exp(logs) * x_1) * x_mask |
|
logdet = torch.sum(logs * x_mask, [1, 2]) |
|
z = torch.cat([z_0, z_1], 1) |
|
return z, logdet |
|
|
|
def store_inverse(self): |
|
self.wn.remove_weight_norm() |
|
|
|
|
|
class GlowFFTBlocks(FFTBlocks): |
|
def __init__(self, hidden_size=128, gin_channels=256, num_layers=2, ffn_kernel_size=5, |
|
dropout=None, num_heads=4, use_pos_embed=True, use_last_norm=True, |
|
norm='ln', use_pos_embed_alpha=True): |
|
super().__init__(hidden_size, num_layers, ffn_kernel_size, dropout, num_heads, use_pos_embed, |
|
use_last_norm, norm, use_pos_embed_alpha) |
|
self.inp_proj = nn.Conv1d(hidden_size + gin_channels, hidden_size, 1) |
|
|
|
def forward(self, x, x_mask=None, g=None): |
|
""" |
|
:param x: [B, C_x, T] |
|
:param x_mask: [B, 1, T] |
|
:param g: [B, C_g, T] |
|
:return: [B, C_x, T] |
|
""" |
|
if g is not None: |
|
x = self.inp_proj(torch.cat([x, g], 1)) |
|
x = x.transpose(1, 2) |
|
x = super(GlowFFTBlocks, self).forward(x, x_mask[:, 0] == 0) |
|
x = x.transpose(1, 2) |
|
return x |
|
|
|
|
|
class TransformerCouplingBlock(nn.Module): |
|
def __init__(self, in_channels, hidden_channels, n_layers, |
|
gin_channels=0, p_dropout=0, sigmoid_scale=False): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.hidden_channels = hidden_channels |
|
self.n_layers = n_layers |
|
self.gin_channels = gin_channels |
|
self.p_dropout = p_dropout |
|
self.sigmoid_scale = sigmoid_scale |
|
|
|
start = torch.nn.Conv1d(in_channels // 2, hidden_channels, 1) |
|
self.start = start |
|
|
|
|
|
end = torch.nn.Conv1d(hidden_channels, in_channels, 1) |
|
end.weight.data.zero_() |
|
end.bias.data.zero_() |
|
self.end = end |
|
self.fft_blocks = GlowFFTBlocks( |
|
hidden_size=hidden_channels, |
|
ffn_kernel_size=3, |
|
gin_channels=gin_channels, |
|
num_layers=n_layers) |
|
|
|
def forward(self, x, x_mask=None, reverse=False, g=None, **kwargs): |
|
if x_mask is None: |
|
x_mask = 1 |
|
x_0, x_1 = x[:, :self.in_channels // 2], x[:, self.in_channels // 2:] |
|
|
|
x = self.start(x_0) * x_mask |
|
x = self.fft_blocks(x, x_mask, g) |
|
out = self.end(x) |
|
|
|
z_0 = x_0 |
|
m = out[:, :self.in_channels // 2, :] |
|
logs = out[:, self.in_channels // 2:, :] |
|
if self.sigmoid_scale: |
|
logs = torch.log(1e-6 + torch.sigmoid(logs + 2)) |
|
if reverse: |
|
z_1 = (x_1 - m) * torch.exp(-logs) * x_mask |
|
logdet = torch.sum(-logs * x_mask, [1, 2]) |
|
else: |
|
z_1 = (m + torch.exp(logs) * x_1) * x_mask |
|
logdet = torch.sum(logs * x_mask, [1, 2]) |
|
z = torch.cat([z_0, z_1], 1) |
|
return z, logdet |
|
|
|
def store_inverse(self): |
|
pass |
|
|
|
|
|
class FreqFFTCouplingBlock(nn.Module): |
|
def __init__(self, in_channels, hidden_channels, n_layers, |
|
gin_channels=0, p_dropout=0, sigmoid_scale=False): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.hidden_channels = hidden_channels |
|
self.n_layers = n_layers |
|
self.gin_channels = gin_channels |
|
self.p_dropout = p_dropout |
|
self.sigmoid_scale = sigmoid_scale |
|
|
|
hs = hidden_channels |
|
stride = 8 |
|
self.start = torch.nn.Conv2d(3, hs, kernel_size=stride * 2, |
|
stride=stride, padding=stride // 2) |
|
end = nn.ConvTranspose2d(hs, 2, kernel_size=stride, stride=stride) |
|
end.weight.data.zero_() |
|
end.bias.data.zero_() |
|
self.end = nn.Sequential( |
|
nn.Conv2d(hs * 3, hs, 3, 1, 1), |
|
nn.ReLU(), |
|
nn.GroupNorm(4, hs), |
|
nn.Conv2d(hs, hs, 3, 1, 1), |
|
end |
|
) |
|
self.fft_v = FFTBlocks(hidden_size=hs, ffn_kernel_size=1, num_layers=n_layers) |
|
self.fft_h = nn.Sequential( |
|
nn.Conv1d(hs, hs, 3, 1, 1), |
|
nn.ReLU(), |
|
nn.Conv1d(hs, hs, 3, 1, 1), |
|
) |
|
self.fft_g = nn.Sequential( |
|
nn.Conv1d( |
|
gin_channels - 160, hs, kernel_size=stride * 2, stride=stride, padding=stride // 2), |
|
Permute(0, 2, 1), |
|
FFTBlocks(hidden_size=hs, ffn_kernel_size=1, num_layers=n_layers), |
|
Permute(0, 2, 1), |
|
) |
|
|
|
def forward(self, x, x_mask=None, reverse=False, g=None, **kwargs): |
|
g_, _ = utils.unsqueeze(g) |
|
g_mel = g_[:, :80] |
|
g_txt = g_[:, 80:] |
|
g_mel, _ = utils.squeeze(g_mel) |
|
g_txt, _ = utils.squeeze(g_txt) |
|
|
|
if x_mask is None: |
|
x_mask = 1 |
|
x_0, x_1 = x[:, :self.in_channels // 2], x[:, self.in_channels // 2:] |
|
x = torch.stack([x_0, g_mel[:, :80], g_mel[:, 80:]], 1) |
|
x = self.start(x) |
|
B, C, N_bins, T = x.shape |
|
|
|
x_v = self.fft_v(x.permute(0, 3, 2, 1).reshape(B * T, N_bins, C)) |
|
x_v = x_v.reshape(B, T, N_bins, -1).permute(0, 3, 2, 1) |
|
|
|
|
|
x_h = self.fft_h(x.permute(0, 2, 1, 3).reshape(B * N_bins, C, T)) |
|
x_h = x_h.reshape(B, N_bins, -1, T).permute(0, 2, 1, 3) |
|
|
|
|
|
x_g = self.fft_g(g_txt)[:, :, None, :].repeat(1, 1, 10, 1) |
|
x = torch.cat([x_v, x_h, x_g], 1) |
|
out = self.end(x) |
|
|
|
z_0 = x_0 |
|
m = out[:, 0] |
|
logs = out[:, 1] |
|
if self.sigmoid_scale: |
|
logs = torch.log(1e-6 + torch.sigmoid(logs + 2)) |
|
if reverse: |
|
z_1 = (x_1 - m) * torch.exp(-logs) * x_mask |
|
logdet = torch.sum(-logs * x_mask, [1, 2]) |
|
else: |
|
z_1 = (m + torch.exp(logs) * x_1) * x_mask |
|
logdet = torch.sum(logs * x_mask, [1, 2]) |
|
z = torch.cat([z_0, z_1], 1) |
|
return z, logdet |
|
|
|
def store_inverse(self): |
|
pass |
|
|
|
|
|
|
|
class ResidualCouplingLayer(nn.Module): |
|
def __init__(self, |
|
channels, |
|
hidden_channels, |
|
kernel_size, |
|
dilation_rate, |
|
n_layers, |
|
p_dropout=0, |
|
gin_channels=0, |
|
mean_only=False, |
|
nn_type='wn'): |
|
assert channels % 2 == 0, "channels should be divisible by 2" |
|
super().__init__() |
|
self.channels = channels |
|
self.hidden_channels = hidden_channels |
|
self.kernel_size = kernel_size |
|
self.dilation_rate = dilation_rate |
|
self.n_layers = n_layers |
|
self.half_channels = channels // 2 |
|
self.mean_only = mean_only |
|
|
|
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1) |
|
if nn_type == 'wn': |
|
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, |
|
gin_channels=gin_channels) |
|
|
|
|
|
|
|
|
|
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1) |
|
self.post.weight.data.zero_() |
|
self.post.bias.data.zero_() |
|
|
|
def forward(self, x, x_mask, g=None, reverse=False): |
|
x0, x1 = torch.split(x, [self.half_channels] * 2, 1) |
|
h = self.pre(x0) * x_mask |
|
h = self.enc(h, x_mask=x_mask, g=g) |
|
stats = self.post(h) * x_mask |
|
if not self.mean_only: |
|
m, logs = torch.split(stats, [self.half_channels] * 2, 1) |
|
else: |
|
m = stats |
|
logs = torch.zeros_like(m) |
|
|
|
if not reverse: |
|
x1 = m + x1 * torch.exp(logs) * x_mask |
|
x = torch.cat([x0, x1], 1) |
|
logdet = torch.sum(logs, [1, 2]) |
|
return x, logdet |
|
else: |
|
x1 = (x1 - m) * torch.exp(-logs) * x_mask |
|
x = torch.cat([x0, x1], 1) |
|
logdet = -torch.sum(logs, [1, 2]) |
|
return x, logdet |
|
|
|
|
|
class ResidualCouplingBlock(nn.Module): |
|
def __init__(self, |
|
channels, |
|
hidden_channels, |
|
kernel_size, |
|
dilation_rate, |
|
n_layers, |
|
n_flows=4, |
|
gin_channels=0, |
|
nn_type='wn'): |
|
super().__init__() |
|
self.channels = channels |
|
self.hidden_channels = hidden_channels |
|
self.kernel_size = kernel_size |
|
self.dilation_rate = dilation_rate |
|
self.n_layers = n_layers |
|
self.n_flows = n_flows |
|
self.gin_channels = gin_channels |
|
|
|
self.flows = nn.ModuleList() |
|
for i in range(n_flows): |
|
self.flows.append( |
|
ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, |
|
gin_channels=gin_channels, mean_only=True, nn_type=nn_type)) |
|
self.flows.append(Flip()) |
|
|
|
def forward(self, x, x_mask, g=None, reverse=False): |
|
if not reverse: |
|
for flow in self.flows: |
|
x, _ = flow(x, x_mask, g=g, reverse=reverse) |
|
else: |
|
for flow in reversed(self.flows): |
|
x, _ = flow(x, x_mask, g=g, reverse=reverse) |
|
return x |
|
|
|
|
|
class Glow(nn.Module): |
|
def __init__(self, |
|
in_channels, |
|
hidden_channels, |
|
kernel_size, |
|
dilation_rate, |
|
n_blocks, |
|
n_layers, |
|
p_dropout=0., |
|
n_split=4, |
|
n_sqz=2, |
|
sigmoid_scale=False, |
|
gin_channels=0, |
|
inv_conv_type='near', |
|
share_cond_layers=False, |
|
share_wn_layers=0, |
|
): |
|
super().__init__() |
|
""" |
|
Note that regularization likes weight decay can leads to Nan error! |
|
""" |
|
|
|
self.in_channels = in_channels |
|
self.hidden_channels = hidden_channels |
|
self.kernel_size = kernel_size |
|
self.dilation_rate = dilation_rate |
|
self.n_blocks = n_blocks |
|
self.n_layers = n_layers |
|
self.p_dropout = p_dropout |
|
self.n_split = n_split |
|
self.n_sqz = n_sqz |
|
self.sigmoid_scale = sigmoid_scale |
|
self.gin_channels = gin_channels |
|
self.share_cond_layers = share_cond_layers |
|
if gin_channels != 0 and share_cond_layers: |
|
cond_layer = torch.nn.Conv1d(gin_channels * n_sqz, 2 * hidden_channels * n_layers, 1) |
|
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight') |
|
wn = None |
|
self.flows = nn.ModuleList() |
|
for b in range(n_blocks): |
|
self.flows.append(ActNorm(channels=in_channels * n_sqz)) |
|
if inv_conv_type == 'near': |
|
self.flows.append(InvConvNear(channels=in_channels * n_sqz, n_split=n_split, n_sqz=n_sqz)) |
|
if inv_conv_type == 'invconv': |
|
self.flows.append(InvConv(channels=in_channels * n_sqz)) |
|
if share_wn_layers > 0: |
|
if b % share_wn_layers == 0: |
|
wn = WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels * n_sqz, |
|
p_dropout, share_cond_layers) |
|
self.flows.append( |
|
CouplingBlock( |
|
in_channels * n_sqz, |
|
hidden_channels, |
|
kernel_size=kernel_size, |
|
dilation_rate=dilation_rate, |
|
n_layers=n_layers, |
|
gin_channels=gin_channels * n_sqz, |
|
p_dropout=p_dropout, |
|
sigmoid_scale=sigmoid_scale, |
|
share_cond_layers=share_cond_layers, |
|
wn=wn |
|
)) |
|
|
|
def forward(self, x, x_mask=None, g=None, reverse=False, return_hiddens=False): |
|
""" |
|
x: [B,T,C] |
|
x_mask: [B,T] |
|
g: [B,T,C] |
|
""" |
|
x = x.transpose(1,2) |
|
x_mask = x_mask.unsqueeze(1) |
|
if g is not None: |
|
g = g.transpose(1,2) |
|
|
|
logdet_tot = 0 |
|
if not reverse: |
|
flows = self.flows |
|
else: |
|
flows = reversed(self.flows) |
|
if return_hiddens: |
|
hs = [] |
|
if self.n_sqz > 1: |
|
x, x_mask_ = utils.squeeze(x, x_mask, self.n_sqz) |
|
if g is not None: |
|
g, _ = utils.squeeze(g, x_mask, self.n_sqz) |
|
x_mask = x_mask_ |
|
if self.share_cond_layers and g is not None: |
|
g = self.cond_layer(g) |
|
for f in flows: |
|
x, logdet = f(x, x_mask, g=g, reverse=reverse) |
|
if return_hiddens: |
|
hs.append(x) |
|
logdet_tot += logdet |
|
if self.n_sqz > 1: |
|
x, x_mask = utils.unsqueeze(x, x_mask, self.n_sqz) |
|
|
|
x = x.transpose(1,2) |
|
if return_hiddens: |
|
return x, logdet_tot, hs |
|
return x, logdet_tot |
|
|
|
def store_inverse(self): |
|
def remove_weight_norm(m): |
|
try: |
|
nn.utils.remove_weight_norm(m) |
|
except ValueError: |
|
return |
|
|
|
self.apply(remove_weight_norm) |
|
for f in self.flows: |
|
f.store_inverse() |
|
|
|
|
|
if __name__ == '__main__': |
|
model = Glow(in_channels=64, |
|
hidden_channels=128, |
|
kernel_size=5, |
|
dilation_rate=1, |
|
n_blocks=12, |
|
n_layers=4, |
|
p_dropout=0.0, |
|
n_split=4, |
|
n_sqz=2, |
|
sigmoid_scale=False, |
|
gin_channels=80 |
|
) |
|
exp = torch.rand([1,1440,64]) |
|
mel = torch.rand([1,1440,80]) |
|
x_mask = torch.ones([1,1440],dtype=torch.float32) |
|
y, logdet = model(exp, x_mask,g=mel, reverse=False) |
|
pred_exp, logdet = model(y, x_mask,g=mel, reverse=False) |
|
|
|
print(" ") |