|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
def init_weights_func(m): |
|
classname = m.__class__.__name__ |
|
if classname.find("Conv1d") != -1: |
|
torch.nn.init.xavier_uniform_(m.weight) |
|
|
|
|
|
class LambdaLayer(nn.Module): |
|
def __init__(self, lambd): |
|
super(LambdaLayer, self).__init__() |
|
self.lambd = lambd |
|
|
|
def forward(self, x): |
|
return self.lambd(x) |
|
|
|
|
|
class LayerNorm(torch.nn.LayerNorm): |
|
"""Layer normalization module. |
|
:param int nout: output dim size |
|
:param int dim: dimension to be normalized |
|
""" |
|
|
|
def __init__(self, nout, dim=-1, eps=1e-5): |
|
"""Construct an LayerNorm object.""" |
|
super(LayerNorm, self).__init__(nout, eps=eps) |
|
self.dim = dim |
|
|
|
def forward(self, x): |
|
"""Apply layer normalization. |
|
:param torch.Tensor x: input tensor |
|
:return: layer normalized tensor |
|
:rtype torch.Tensor |
|
""" |
|
if self.dim == -1: |
|
return super(LayerNorm, self).forward(x) |
|
return super(LayerNorm, self).forward(x.transpose(1, -1)).transpose(1, -1) |
|
|
|
|
|
|
|
class ResidualBlock(nn.Module): |
|
"""Implements conv->PReLU->norm n-times""" |
|
|
|
def __init__(self, channels, kernel_size, dilation, n=2, norm_type='bn', dropout=0.0, |
|
c_multiple=2, ln_eps=1e-12, bias=False): |
|
super(ResidualBlock, self).__init__() |
|
|
|
if norm_type == 'bn': |
|
norm_builder = lambda: nn.BatchNorm1d(channels) |
|
elif norm_type == 'in': |
|
norm_builder = lambda: nn.InstanceNorm1d(channels, affine=True) |
|
elif norm_type == 'gn': |
|
norm_builder = lambda: nn.GroupNorm(8, channels) |
|
elif norm_type == 'ln': |
|
norm_builder = lambda: LayerNorm(channels, dim=1, eps=ln_eps) |
|
else: |
|
norm_builder = lambda: nn.Identity() |
|
|
|
self.blocks = [ |
|
nn.Sequential( |
|
norm_builder(), |
|
nn.Conv1d(channels, c_multiple * channels, kernel_size, dilation=dilation, |
|
padding=(dilation * (kernel_size - 1)) // 2, bias=bias), |
|
LambdaLayer(lambda x: x * kernel_size ** -0.5), |
|
nn.GELU(), |
|
nn.Conv1d(c_multiple * channels, channels, 1, dilation=dilation, bias=bias), |
|
) |
|
for _ in range(n) |
|
] |
|
|
|
self.blocks = nn.ModuleList(self.blocks) |
|
self.dropout = dropout |
|
|
|
def forward(self, x): |
|
nonpadding = (x.abs().sum(1) > 0).float()[:, None, :] |
|
for b in self.blocks: |
|
x_ = b(x) |
|
if self.dropout > 0 and self.training: |
|
x_ = F.dropout(x_, self.dropout, training=self.training) |
|
x = x + x_ |
|
x = x * nonpadding |
|
return x |
|
|
|
|
|
class ConvBlocks(nn.Module): |
|
"""Decodes the expanded phoneme encoding into spectrograms""" |
|
|
|
def __init__(self, channels, out_dims, dilations, kernel_size, |
|
norm_type='ln', layers_in_block=2, c_multiple=2, |
|
dropout=0.0, ln_eps=1e-5, init_weights=True, is_BTC=True, bias=False): |
|
super(ConvBlocks, self).__init__() |
|
self.is_BTC = is_BTC |
|
self.res_blocks = nn.Sequential( |
|
*[ResidualBlock(channels, kernel_size, d, |
|
n=layers_in_block, norm_type=norm_type, c_multiple=c_multiple, |
|
dropout=dropout, ln_eps=ln_eps, bias=bias) |
|
for d in dilations], |
|
) |
|
if norm_type == 'bn': |
|
norm = nn.BatchNorm1d(channels) |
|
elif norm_type == 'in': |
|
norm = nn.InstanceNorm1d(channels, affine=True) |
|
elif norm_type == 'gn': |
|
norm = nn.GroupNorm(8, channels) |
|
elif norm_type == 'ln': |
|
norm = LayerNorm(channels, dim=1, eps=ln_eps) |
|
self.last_norm = norm |
|
self.post_net1 = nn.Conv1d(channels, out_dims, kernel_size=3, padding=1, bias=bias) |
|
if init_weights: |
|
self.apply(init_weights_func) |
|
|
|
def forward(self, x): |
|
""" |
|
|
|
:param x: [B, T, H] |
|
:return: [B, T, H] |
|
""" |
|
if self.is_BTC: |
|
x = x.transpose(1, 2) |
|
nonpadding = (x.abs().sum(1) > 0).float()[:, None, :] |
|
x = self.res_blocks(x) * nonpadding |
|
x = self.last_norm(x) * nonpadding |
|
x = self.post_net1(x) * nonpadding |
|
if self.is_BTC: |
|
x = x.transpose(1, 2) |
|
return x |
|
|
|
|
|
class SeqLevelConvolutionalModel(nn.Module): |
|
def __init__(self, out_dim=64, dropout=0.5, audio_feat_type='ppg', backbone_type='unet', norm_type='bn'): |
|
nn.Module.__init__(self) |
|
self.audio_feat_type = audio_feat_type |
|
if audio_feat_type == 'ppg': |
|
self.audio_encoder = nn.Sequential(*[ |
|
nn.Conv1d(29, 48, 3, 1, 1, bias=False), |
|
nn.BatchNorm1d(48) if norm_type=='bn' else LayerNorm(48, dim=1), |
|
nn.GELU(), |
|
nn.Conv1d(48, 48, 3, 1, 1, bias=False) |
|
]) |
|
self.energy_encoder = nn.Sequential(*[ |
|
nn.Conv1d(1, 16, 3, 1, 1, bias=False), |
|
nn.BatchNorm1d(16) if norm_type=='bn' else LayerNorm(16, dim=1), |
|
nn.GELU(), |
|
nn.Conv1d(16, 16, 3, 1, 1, bias=False) |
|
]) |
|
elif audio_feat_type == 'mel': |
|
self.mel_encoder = nn.Sequential(*[ |
|
nn.Conv1d(80, 64, 3, 1, 1, bias=False), |
|
nn.BatchNorm1d(64) if norm_type=='bn' else LayerNorm(64, dim=1), |
|
nn.GELU(), |
|
nn.Conv1d(64, 64, 3, 1, 1, bias=False) |
|
]) |
|
else: |
|
raise NotImplementedError("now only ppg or mel are supported!") |
|
|
|
self.style_encoder = nn.Sequential(*[ |
|
nn.Linear(135, 256), |
|
nn.GELU(), |
|
nn.Linear(256, 256) |
|
]) |
|
|
|
if backbone_type == 'resnet': |
|
self.backbone = ResNetBackbone() |
|
elif backbone_type == 'unet': |
|
self.backbone = UNetBackbone() |
|
elif backbone_type == 'resblocks': |
|
self.backbone = ResBlocksBackbone() |
|
else: |
|
raise NotImplementedError("Now only resnet and unet are supported!") |
|
|
|
self.out_layer = nn.Sequential( |
|
nn.BatchNorm1d(512) if norm_type=='bn' else LayerNorm(512, dim=1), |
|
nn.Conv1d(512, 64, 3, 1, 1, bias=False), |
|
nn.PReLU(), |
|
nn.Conv1d(64, out_dim, 3, 1, 1, bias=False) |
|
) |
|
self.feat_dropout = nn.Dropout(p=dropout) |
|
|
|
@property |
|
def device(self): |
|
return self.backbone.parameters().__next__().device |
|
|
|
def forward(self, batch, ret, log_dict=None): |
|
style, x_mask = batch['style'].to(self.device), batch['x_mask'].to(self.device) |
|
style_feat = self.style_encoder(style) |
|
|
|
if self.audio_feat_type == 'ppg': |
|
audio, energy = batch['audio'].to(self.device), batch['energy'].to(self.device) |
|
audio_feat = self.audio_encoder(audio.transpose(1,2)).transpose(1,2) * x_mask.unsqueeze(2) |
|
energy_feat = self.energy_encoder(energy.transpose(1,2)).transpose(1,2) * x_mask.unsqueeze(2) |
|
feat = torch.cat([audio_feat, energy_feat], dim=2) |
|
elif self.audio_feat_type == 'mel': |
|
mel = batch['mel'].to(self.device) |
|
feat = self.mel_encoder(mel.transpose(1,2)).transpose(1,2) * x_mask.unsqueeze(2) |
|
|
|
feat, x_mask = self.backbone(x=feat, sty=style_feat, x_mask=x_mask) |
|
|
|
out = self.out_layer(feat.transpose(1,2)).transpose(1,2) * x_mask.unsqueeze(2) |
|
|
|
ret['pred'] = out |
|
ret['mask'] = x_mask |
|
return out |
|
|
|
|
|
class ResBlocksBackbone(nn.Module): |
|
def __init__(self, in_dim=64, out_dim=512, p_dropout=0.5, norm_type='bn'): |
|
super(ResBlocksBackbone,self).__init__() |
|
self.resblocks_0 = ConvBlocks(channels=in_dim, out_dims=64, dilations=[1]*3, kernel_size=3, norm_type=norm_type, is_BTC=False) |
|
self.resblocks_1 = ConvBlocks(channels=64, out_dims=128, dilations=[1]*4, kernel_size=3, norm_type=norm_type, is_BTC=False) |
|
self.resblocks_2 = ConvBlocks(channels=128, out_dims=256, dilations=[1]*14, kernel_size=3, norm_type=norm_type, is_BTC=False) |
|
self.resblocks_3 = ConvBlocks(channels=512, out_dims=512, dilations=[1]*3, kernel_size=3, norm_type=norm_type, is_BTC=False) |
|
self.resblocks_4 = ConvBlocks(channels=512, out_dims=out_dim, dilations=[1]*3, kernel_size=3, norm_type=norm_type, is_BTC=False) |
|
|
|
self.downsampler = LambdaLayer(lambda x: F.interpolate(x, scale_factor=0.5, mode='linear')) |
|
self.upsampler = LambdaLayer(lambda x: F.interpolate(x, scale_factor=4, mode='linear')) |
|
|
|
self.dropout = nn.Dropout(p=p_dropout) |
|
|
|
def forward(self, x, sty, x_mask=1.): |
|
""" |
|
x: [B, T, C] |
|
sty: [B, C=256] |
|
x_mask: [B, T] |
|
ret: [B, T/2, C] |
|
""" |
|
x = x.transpose(1, 2) |
|
x_mask = x_mask[:, None, :] |
|
|
|
x = self.resblocks_0(x) * x_mask |
|
|
|
x_mask = self.downsampler(x_mask) |
|
x = self.downsampler(x) * x_mask |
|
x = self.resblocks_1(x) * x_mask |
|
x = self.resblocks_2(x) * x_mask |
|
|
|
x = self.dropout(x.transpose(1,2)).transpose(1,2) |
|
sty = sty[:, :, None].repeat([1,1,x_mask.shape[2]]) |
|
x = torch.cat([x, sty], dim=1) |
|
|
|
x = self.resblocks_3(x) * x_mask |
|
x = self.resblocks_4(x) * x_mask |
|
|
|
x = x.transpose(1,2) |
|
x_mask = x_mask.squeeze(1) |
|
return x, x_mask |
|
|
|
|
|
|
|
class ResNetBackbone(nn.Module): |
|
def __init__(self, in_dim=64, out_dim=512, p_dropout=0.5, norm_type='bn'): |
|
super(ResNetBackbone,self).__init__() |
|
self.resblocks_0 = ConvBlocks(channels=in_dim, out_dims=64, dilations=[1]*3, kernel_size=3, norm_type=norm_type, is_BTC=False) |
|
self.resblocks_1 = ConvBlocks(channels=64, out_dims=128, dilations=[1]*4, kernel_size=3, norm_type=norm_type, is_BTC=False) |
|
self.resblocks_2 = ConvBlocks(channels=128, out_dims=256, dilations=[1]*14, kernel_size=3, norm_type=norm_type, is_BTC=False) |
|
self.resblocks_3 = ConvBlocks(channels=512, out_dims=512, dilations=[1]*3, kernel_size=3, norm_type=norm_type, is_BTC=False) |
|
self.resblocks_4 = ConvBlocks(channels=512, out_dims=out_dim, dilations=[1]*3, kernel_size=3, norm_type=norm_type, is_BTC=False) |
|
|
|
self.downsampler = LambdaLayer(lambda x: F.interpolate(x, scale_factor=0.5, mode='linear')) |
|
self.upsampler = LambdaLayer(lambda x: F.interpolate(x, scale_factor=4, mode='linear')) |
|
|
|
self.dropout = nn.Dropout(p=p_dropout) |
|
|
|
def forward(self, x, sty, x_mask=1.): |
|
""" |
|
x: [B, T, C] |
|
sty: [B, C=256] |
|
x_mask: [B, T] |
|
ret: [B, T/2, C] |
|
""" |
|
x = x.transpose(1, 2) |
|
x_mask = x_mask[:, None, :] |
|
|
|
x = self.resblocks_0(x) * x_mask |
|
|
|
x_mask = self.downsampler(x_mask) |
|
x = self.downsampler(x) * x_mask |
|
x = self.resblocks_1(x) * x_mask |
|
|
|
x_mask = self.downsampler(x_mask) |
|
x = self.downsampler(x) * x_mask |
|
x = self.resblocks_2(x) * x_mask |
|
|
|
x_mask = self.downsampler(x_mask) |
|
x = self.downsampler(x) * x_mask |
|
x = self.dropout(x.transpose(1,2)).transpose(1,2) |
|
sty = sty[:, :, None].repeat([1,1,x_mask.shape[2]]) |
|
x = torch.cat([x, sty], dim=1) |
|
x = self.resblocks_3(x) * x_mask |
|
|
|
x_mask = self.upsampler(x_mask) |
|
x = self.upsampler(x) * x_mask |
|
x = self.resblocks_4(x) * x_mask |
|
|
|
x = x.transpose(1,2) |
|
x_mask = x_mask.squeeze(1) |
|
return x, x_mask |
|
|
|
|
|
class UNetBackbone(nn.Module): |
|
def __init__(self, in_dim=64, out_dim=512, p_dropout=0.5, norm_type='bn'): |
|
super(UNetBackbone, self).__init__() |
|
self.resblocks_0 = ConvBlocks(channels=in_dim, out_dims=64, dilations=[1]*3, kernel_size=3, norm_type=norm_type, is_BTC=False) |
|
self.resblocks_1 = ConvBlocks(channels=64, out_dims=128, dilations=[1]*4, kernel_size=3, norm_type=norm_type, is_BTC=False) |
|
self.resblocks_2 = ConvBlocks(channels=128, out_dims=256, dilations=[1]*8, kernel_size=3, norm_type=norm_type, is_BTC=False) |
|
self.resblocks_3 = ConvBlocks(channels=512, out_dims=512, dilations=[1]*3, kernel_size=3, norm_type=norm_type, is_BTC=False) |
|
self.resblocks_4 = ConvBlocks(channels=768, out_dims=512, dilations=[1]*3, kernel_size=3, norm_type=norm_type, is_BTC=False) |
|
self.resblocks_5 = ConvBlocks(channels=640, out_dims=out_dim, dilations=[1]*3, kernel_size=3, norm_type=norm_type, is_BTC=False) |
|
|
|
self.downsampler = nn.Upsample(scale_factor=0.5, mode='linear') |
|
self.upsampler = nn.Upsample(scale_factor=2, mode='linear') |
|
self.dropout = nn.Dropout(p=p_dropout) |
|
|
|
def forward(self, x, sty, x_mask=1.): |
|
""" |
|
x: [B, T, C] |
|
sty: [B, C=256] |
|
x_mask: [B, T] |
|
ret: [B, T/2, C] |
|
""" |
|
x = x.transpose(1, 2) |
|
x_mask = x_mask[:, None, :] |
|
|
|
x0 = self.resblocks_0(x) * x_mask |
|
|
|
x_mask = self.downsampler(x_mask) |
|
x = self.downsampler(x0) * x_mask |
|
x1 = self.resblocks_1(x) * x_mask |
|
|
|
x_mask = self.downsampler(x_mask) |
|
x = self.downsampler(x1) * x_mask |
|
x2 = self.resblocks_2(x) * x_mask |
|
|
|
x_mask = self.downsampler(x_mask) |
|
x = self.downsampler(x2) * x_mask |
|
x = self.dropout(x.transpose(1,2)).transpose(1,2) |
|
sty = sty[:, :, None].repeat([1,1,x_mask.shape[2]]) |
|
x = torch.cat([x, sty], dim=1) |
|
x3 = self.resblocks_3(x) * x_mask |
|
|
|
x_mask = self.upsampler(x_mask) |
|
x = self.upsampler(x3) * x_mask |
|
x = torch.cat([x, self.dropout(x2.transpose(1,2)).transpose(1,2)], dim=1) |
|
x4 = self.resblocks_4(x) * x_mask |
|
|
|
x_mask = self.upsampler(x_mask) |
|
x = self.upsampler(x4) * x_mask |
|
x = torch.cat([x, self.dropout(x1.transpose(1,2)).transpose(1,2)], dim=1) |
|
x5 = self.resblocks_5(x) * x_mask |
|
|
|
x = x5.transpose(1,2) |
|
x_mask = x_mask.squeeze(1) |
|
return x, x_mask |
|
|
|
|
|
if __name__ == '__main__': |
|
pass |
|
|