ameerazam08's picture
Upload folder using huggingface_hub
e34aada verified
raw
history blame
6.81 kB
import librosa
import numpy as np
import pyloudnorm as pyln
import torch
from scipy.signal import get_window
from utils.audio.dct import dct
from utils.audio.vad import trim_long_silences
def librosa_pad_lr(x, fsize, fshift, pad_sides=1):
'''compute right padding (final frame) or both sides padding (first and final frames)
'''
assert pad_sides in (1, 2)
# return int(fsize // 2)
pad = (x.shape[0] // fshift + 1) * fshift - x.shape[0]
if pad_sides == 1:
return 0, pad
else:
return pad // 2, pad // 2 + pad % 2
def amp_to_db(x):
return 20 * np.log10(np.maximum(1e-5, x))
def db_to_amp(x):
return 10.0 ** (x * 0.05)
def normalize(S, min_level_db):
return (S - min_level_db) / -min_level_db
def denormalize(D, min_level_db):
return (D * -min_level_db) + min_level_db
def librosa_wav2spec(wav_path,
fft_size=None,
hop_size=256,
win_length=1024,
window="hann",
num_mels=80,
fmin=80,
fmax=-1,
eps=1e-6,
sample_rate=22050,
loud_norm=False,
trim_long_sil=False,
center=True):
if isinstance(wav_path, str):
if trim_long_sil:
wav, _, _ = trim_long_silences(wav_path, sample_rate)
else:
wav, _ = librosa.core.load(wav_path, sr=sample_rate)
else:
wav = wav_path
if fft_size is None:
fft_size = win_length
if loud_norm:
meter = pyln.Meter(sample_rate) # create BS.1770 meter
loudness = meter.integrated_loudness(wav)
wav = pyln.normalize.loudness(wav, loudness, -16.0)
if np.abs(wav).max() > 1:
wav = wav / np.abs(wav).max()
# get amplitude spectrogram
x_stft = librosa.stft(wav, n_fft=fft_size, hop_length=hop_size,
win_length=win_length, window=window, center=center)
linear_spc = np.abs(x_stft) # (n_bins, T)
# get mel basis
fmin = 0 if fmin == -1 else fmin
fmax = sample_rate / 2 if fmax == -1 else fmax
mel_basis = librosa.filters.mel(sr=sample_rate, n_fft=fft_size, n_mels=num_mels, fmin=fmin, fmax=fmax)
# calculate mel spec
mel = mel_basis @ linear_spc
mel = np.log10(np.maximum(eps, mel)) # (n_mel_bins, T)
if center:
l_pad, r_pad = librosa_pad_lr(wav, fft_size, hop_size, 1)
wav = np.pad(wav, (l_pad, r_pad), mode='constant', constant_values=0.0)
wav = wav[:mel.shape[1] * hop_size]
# log linear spec
linear_spc = np.log10(np.maximum(eps, linear_spc))
return {'wav': wav, 'mel': mel.T, 'linear': linear_spc.T, 'mel_basis': mel_basis}
def librosa_wav2mfcc(wav_path,
fft_size=None,
hop_size=256,
win_length=1024,
window="hann",
num_mels=80,
fmin=80,
fmax=-1,
sample_rate=22050,
center=True):
if isinstance(wav_path, str):
wav, _ = librosa.core.load(wav_path, sr=sample_rate)
else:
wav = wav_path
mfcc = librosa.feature.mfcc(y=wav, sr=sample_rate, n_mfcc=13,
n_fft=fft_size, n_mels=num_mels, fmin=fmin, fmax=fmax,
hop_length=hop_size,
win_length=win_length, window=window, center=center)
return mfcc.T
def torch_wav2spec(wav,
mel_basis,
fft_size=1024,
hop_size=256,
win_length=1024,
eps=1e-6):
fft_window = get_window('hann', win_length, fftbins=True)
fft_window = torch.FloatTensor(fft_window).to(wav.device)
mel_basis = torch.FloatTensor(mel_basis).to(wav.device)
x_stft = torch.stft(wav, fft_size, hop_size, win_length, fft_window,
center=False, pad_mode='constant', normalized=False, onesided=True, return_complex=True)
linear_spc = torch.abs(x_stft)
mel = mel_basis @ linear_spc
mel = torch.log10(torch.clamp_min(mel, eps)) # (n_mel_bins, T)
return mel.transpose(1, 2)
def mel2mfcc_torch(mel, n_coef=13):
return dct(mel, norm='ortho')[:, :, :n_coef]
def librosa_wav2linearspec(wav_path,
fft_size=None,
hop_size=256,
win_length=1024,
window="hann",
num_mels=80,
fmin=80,
fmax=-1,
eps=1e-6,
sample_rate=22050,
loud_norm=False,
trim_long_sil=False,
center=True):
if isinstance(wav_path, str):
if trim_long_sil:
wav, _, _ = trim_long_silences(wav_path, sample_rate)
else:
wav, _ = librosa.core.load(wav_path, sr=sample_rate)
else:
wav = wav_path
if fft_size is None:
fft_size = win_length
if loud_norm:
meter = pyln.Meter(sample_rate) # create BS.1770 meter
loudness = meter.integrated_loudness(wav)
wav = pyln.normalize.loudness(wav, loudness, -16.0)
if np.abs(wav).max() > 1:
wav = wav / np.abs(wav).max()
# get amplitude spectrogram
x_stft = librosa.stft(wav, n_fft=fft_size, hop_length=hop_size,
win_length=win_length, window=window, center=center)
linear_spc = np.abs(x_stft) # (n_bins, T)
# pad wav
if center:
l_pad, r_pad = librosa_pad_lr(wav, fft_size, hop_size, 1)
wav = np.pad(wav, (l_pad, r_pad), mode='constant', constant_values=0.0)
wav = wav[:linear_spc.shape[1] * hop_size]
# log linear spec
linear_spc = np.log10(np.maximum(eps, linear_spc))
return {'wav': wav, 'linear': linear_spc.T}
def librosa_linear2mel(linear_spec, hparams, num_mels=160, eps=1e-6):
fft_size=hparams['fft_size']
hop_size=hparams['hop_size']
win_length=hparams['win_size']
fmin=hparams['fmin']
fmax=hparams['fmax']
sample_rate=hparams['audio_sample_rate']
# get mel basis
fmin = 0 if fmin == -1 else fmin
fmax = sample_rate / 2 if fmax == -1 else fmax
mel_basis = librosa.filters.mel(sample_rate, fft_size, num_mels, fmin, fmax)
mel_basis = torch.FloatTensor(mel_basis).to(linear_spec.device)[None, :].repeat(linear_spec.shape[0], 1, 1)
# perform linear spec to mel spec
linear_spec = torch.pow(10, linear_spec)
mel = torch.bmm(mel_basis, linear_spec.transpose(1, 2))
mel = torch.log10(torch.clamp_min(mel, eps)) # (n_mel_bins, T)
return mel.transpose(1, 2)