|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from torchvision import models |
|
import numpy as np |
|
|
|
|
|
class VGG19Loss(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.vgg = VGG19Model() |
|
|
|
self.criterion = nn.L1Loss() |
|
self.weights = [1.0/32, 1.0/16, 1.0/8, 1.0/4, 1.0] |
|
self.downsample = nn.AvgPool2d(2, stride=2, count_include_pad=False) |
|
|
|
def forward(self, x, y): |
|
while x.size()[3] > 1024: |
|
x, y = self.downsample(x), self.y.downsample(y) |
|
x_vgg = self.vgg(x) |
|
y_vgg = self.vgg(y) |
|
loss = 0 |
|
for i in range(len(x_vgg)): |
|
loss += self.weights[i] * self.criterion(x_vgg[i], y_vgg[i].detach()) |
|
return loss |
|
|
|
class VGG19Model(torch.nn.Module): |
|
""" |
|
Vgg19 network for perceptual loss. |
|
""" |
|
|
|
def __init__(self, requires_grad=False): |
|
super(VGG19Model, self).__init__() |
|
|
|
vgg_pretrained_features = models.vgg19(pretrained=True).features |
|
self.slice1 = torch.nn.Sequential() |
|
self.slice2 = torch.nn.Sequential() |
|
self.slice3 = torch.nn.Sequential() |
|
self.slice4 = torch.nn.Sequential() |
|
self.slice5 = torch.nn.Sequential() |
|
for x in range(2): |
|
self.slice1.add_module(str(x), vgg_pretrained_features[x]) |
|
for x in range(2, 7): |
|
self.slice2.add_module(str(x), vgg_pretrained_features[x]) |
|
for x in range(7, 12): |
|
self.slice3.add_module(str(x), vgg_pretrained_features[x]) |
|
for x in range(12, 21): |
|
self.slice4.add_module(str(x), vgg_pretrained_features[x]) |
|
for x in range(21, 30): |
|
self.slice5.add_module(str(x), vgg_pretrained_features[x]) |
|
|
|
self.mean = torch.nn.Parameter(data=torch.Tensor(np.array([0.485, 0.456, 0.406]).reshape((1, 3, 1, 1))), |
|
requires_grad=False) |
|
self.std = torch.nn.Parameter(data=torch.Tensor(np.array([0.229, 0.224, 0.225]).reshape((1, 3, 1, 1))), |
|
requires_grad=False) |
|
|
|
if not requires_grad: |
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
|
|
def forward(self, X, is_normalize=True): |
|
if is_normalize: |
|
X = (X + 1) / 2 |
|
assert torch.all(X <= 1+1e-6) |
|
assert torch.all(X >= -1e-6) |
|
X = (X - self.mean) / self.std |
|
h_relu1 = self.slice1(X) |
|
h_relu2 = self.slice2(h_relu1) |
|
h_relu3 = self.slice3(h_relu2) |
|
h_relu4 = self.slice4(h_relu3) |
|
h_relu5 = self.slice5(h_relu4) |
|
out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5] |
|
return out |
|
|
|
if __name__ == '__main__': |
|
vgg_loss_fn = VGG19Loss() |
|
x1 = torch.randn([4, 3, 512, 512]).clamp(-1,1) |
|
x2 = torch.randn([4, 3, 512, 512]).clamp(-1,1) |
|
loss = vgg_loss_fn(x1, x2) |
|
print(loss) |