|
import torch |
|
import torch.nn.functional as F |
|
|
|
|
|
def rotation_matrix_x(theta): |
|
theta = theta.reshape(-1, 1, 1) |
|
z = torch.zeros_like(theta) |
|
o = torch.ones_like(theta) |
|
c = torch.cos(theta) |
|
s = torch.sin(theta) |
|
return torch.cat( |
|
[ |
|
torch.cat([c, z, s], 2), |
|
torch.cat([z, o, z], 2), |
|
torch.cat([-s, z, c], 2), |
|
], |
|
1, |
|
) |
|
|
|
|
|
def rotation_matrix_y(theta): |
|
theta = theta.reshape(-1, 1, 1) |
|
z = torch.zeros_like(theta) |
|
o = torch.ones_like(theta) |
|
c = torch.cos(theta) |
|
s = torch.sin(theta) |
|
return torch.cat( |
|
[ |
|
torch.cat([o, z, z], 2), |
|
torch.cat([z, c, -s], 2), |
|
torch.cat([z, s, c], 2), |
|
], |
|
1, |
|
) |
|
|
|
|
|
def rotation_matrix_z(theta): |
|
theta = theta.reshape(-1, 1, 1) |
|
z = torch.zeros_like(theta) |
|
o = torch.ones_like(theta) |
|
c = torch.cos(theta) |
|
s = torch.sin(theta) |
|
return torch.cat( |
|
[ |
|
torch.cat([c, -s, z], 2), |
|
torch.cat([s, c, z], 2), |
|
torch.cat([z, z, o], 2), |
|
], |
|
1, |
|
) |
|
|
|
|
|
def transform_kp(canonical_kp, yaw, pitch, roll, t, delta): |
|
|
|
|
|
|
|
rot_mat = rotation_matrix_y(pitch) @ rotation_matrix_x(yaw) @ rotation_matrix_z(roll) |
|
transformed_kp = torch.matmul(rot_mat.unsqueeze(1), canonical_kp.unsqueeze(-1)).squeeze(-1) + t.unsqueeze(1) + delta |
|
return transformed_kp, rot_mat |
|
|
|
|
|
def transform_kp_with_new_pose(canonical_kp, yaw, pitch, roll, t, delta, new_yaw, new_pitch, new_roll): |
|
|
|
|
|
|
|
old_rot_mat = rotation_matrix_y(pitch) @ rotation_matrix_x(yaw) @ rotation_matrix_z(roll) |
|
rot_mat = rotation_matrix_y(new_pitch) @ rotation_matrix_x(new_yaw) @ rotation_matrix_z(new_roll) |
|
R = torch.matmul(rot_mat, torch.inverse(old_rot_mat)) |
|
transformed_kp = ( |
|
torch.matmul(rot_mat.unsqueeze(1), canonical_kp.unsqueeze(-1)).squeeze(-1) |
|
+ t.unsqueeze(1) |
|
+ torch.matmul(R.unsqueeze(1), delta.unsqueeze(-1)).squeeze(-1) |
|
) |
|
zt = 0.33 - transformed_kp[:, :, 2].mean() |
|
transformed_kp = transformed_kp + torch.FloatTensor([0, 0, zt]).cuda() |
|
return transformed_kp, rot_mat |
|
|
|
|
|
def make_coordinate_grid_2d(spatial_size): |
|
h, w = spatial_size |
|
x = torch.arange(h).cuda() |
|
y = torch.arange(w).cuda() |
|
x = 2 * (x / (h - 1)) - 1 |
|
y = 2 * (y / (w - 1)) - 1 |
|
xx = x.reshape(-1, 1).repeat(1, w) |
|
yy = y.reshape(1, -1).repeat(h, 1) |
|
meshed = torch.cat([yy.unsqueeze(2), xx.unsqueeze(2)], 2) |
|
return meshed |
|
|
|
|
|
def make_coordinate_grid_3d(spatial_size): |
|
d, h, w = spatial_size |
|
z = torch.arange(d).cuda() |
|
x = torch.arange(h).cuda() |
|
y = torch.arange(w).cuda() |
|
z = 2 * (z / (d - 1)) - 1 |
|
x = 2 * (x / (h - 1)) - 1 |
|
y = 2 * (y / (w - 1)) - 1 |
|
zz = z.reshape(-1, 1, 1).repeat(1, h, w) |
|
xx = x.reshape(1, -1, 1).repeat(d, 1, w) |
|
yy = y.reshape(1, 1, -1).repeat(d, h, 1) |
|
meshed = torch.cat([yy.unsqueeze(3), xx.unsqueeze(3), zz.unsqueeze(3)], 3) |
|
return meshed |
|
|
|
|
|
def out2heatmap(out, temperature=0.1): |
|
final_shape = out.shape |
|
heatmap = out.reshape(final_shape[0], final_shape[1], -1) |
|
heatmap = F.softmax(heatmap / temperature, dim=2) |
|
heatmap = heatmap.reshape(*final_shape) |
|
return heatmap |
|
|
|
|
|
def heatmap2kp(heatmap): |
|
shape = heatmap.shape |
|
grid = make_coordinate_grid_3d(shape[2:]).unsqueeze(0).unsqueeze(0) |
|
kp = (heatmap.unsqueeze(-1) * grid).sum(dim=(2, 3, 4)) |
|
return kp |
|
|
|
|
|
def kp2gaussian_2d(kp, spatial_size, kp_variance=0.01): |
|
N, K = kp.shape[:2] |
|
coordinate_grid = make_coordinate_grid_2d(spatial_size).reshape(1, 1, *spatial_size, 2).repeat(N, K, 1, 1, 1) |
|
mean = kp.reshape(N, K, 1, 1, 2) |
|
mean_sub = coordinate_grid - mean |
|
out = torch.exp(-0.5 * (mean_sub ** 2).sum(-1) / kp_variance) |
|
return out |
|
|
|
|
|
def kp2gaussian_3d(kp, spatial_size, kp_variance=0.01): |
|
N, K = kp.shape[:2] |
|
coordinate_grid = make_coordinate_grid_3d(spatial_size).reshape(1, 1, *spatial_size, 3).repeat(N, K, 1, 1, 1, 1) |
|
mean = kp.reshape(N, K, 1, 1, 1, 3) |
|
mean_sub = coordinate_grid - mean |
|
out = torch.exp(-0.5 * (mean_sub ** 2).sum(-1) / kp_variance) |
|
return out |
|
|
|
|
|
def create_heatmap_representations(fs, kp_s, kp_d): |
|
spatial_size = fs.shape[2:] |
|
heatmap_d = kp2gaussian_3d(kp_d, spatial_size) |
|
heatmap_s = kp2gaussian_3d(kp_s, spatial_size) |
|
heatmap = heatmap_d - heatmap_s |
|
zeros = torch.zeros(heatmap.shape[0], 1, *spatial_size).cuda() |
|
|
|
heatmap = torch.cat([zeros, heatmap], dim=1) |
|
|
|
heatmap = heatmap.unsqueeze(2) |
|
return heatmap |
|
|
|
|
|
def create_sparse_motions(fs, kp_s, kp_d, Rs, Rd): |
|
N, _, D, H, W = fs.shape |
|
K = kp_s.shape[1] |
|
identity_grid = make_coordinate_grid_3d((D, H, W)).reshape(1, 1, D, H, W, 3).repeat(N, 1, 1, 1, 1, 1) |
|
|
|
coordinate_grid = identity_grid.repeat(1, K, 1, 1, 1, 1) - kp_d.reshape(N, K, 1, 1, 1, 3) |
|
|
|
jacobian = torch.matmul(Rs, torch.inverse(Rd)).unsqueeze(-3).unsqueeze(-3).unsqueeze(-3).unsqueeze(-3) |
|
coordinate_grid = torch.matmul(jacobian, coordinate_grid.unsqueeze(-1)).squeeze(-1) |
|
driving_to_source = coordinate_grid + kp_s.reshape(N, K, 1, 1, 1, 3) |
|
sparse_motions = torch.cat([identity_grid, driving_to_source], dim=1) |
|
|
|
|
|
return sparse_motions |
|
|
|
def create_deformed_source_image2d(fs, sparse_motions): |
|
N, _, H, W = fs.shape |
|
K = sparse_motions.shape[1] - 1 |
|
|
|
source_repeat = fs.unsqueeze(1).repeat(1, K + 1, 1, 1, 1).reshape(N * (K + 1), -1, H, W) |
|
|
|
sparse_motions = sparse_motions.reshape((N * (K + 1), H, W, -1)) |
|
|
|
sparse_deformed = F.grid_sample(source_repeat, sparse_motions, align_corners=True) |
|
sparse_deformed = sparse_deformed.reshape((N, K + 1, -1, H, W)) |
|
|
|
return sparse_deformed |
|
|
|
def create_deformed_source_image(fs, sparse_motions): |
|
N, _, D, H, W = fs.shape |
|
K = sparse_motions.shape[1] - 1 |
|
|
|
source_repeat = fs.unsqueeze(1).repeat(1, K + 1, 1, 1, 1, 1).reshape(N * (K + 1), -1, D, H, W) |
|
|
|
sparse_motions = sparse_motions.reshape((N * (K + 1), D, H, W, -1)) |
|
|
|
sparse_deformed = F.grid_sample(source_repeat, sparse_motions, align_corners=True) |
|
sparse_deformed = sparse_deformed.reshape((N, K + 1, -1, D, H, W)) |
|
|
|
return sparse_deformed |
|
|
|
|
|
def apply_imagenet_normalization(input): |
|
mean = input.new_tensor([0.485, 0.456, 0.406]).reshape(1, 3, 1, 1) |
|
std = input.new_tensor([0.229, 0.224, 0.225]).reshape(1, 3, 1, 1) |
|
output = (input - mean) / std |
|
return output |
|
|
|
|
|
def apply_vggface_normalization(input): |
|
mean = input.new_tensor([129.186279296875, 104.76238250732422, 93.59396362304688]).reshape(1, 3, 1, 1) |
|
std = input.new_tensor([1, 1, 1]).reshape(1, 3, 1, 1) |
|
output = (input * 255 - mean) / std |
|
return output |
|
|