ameerazam08's picture
Upload folder using huggingface_hub
e34aada verified
raw
history blame
7.13 kB
import torch
import torch.nn.functional as F
def rotation_matrix_x(theta):
theta = theta.reshape(-1, 1, 1)
z = torch.zeros_like(theta)
o = torch.ones_like(theta)
c = torch.cos(theta)
s = torch.sin(theta)
return torch.cat(
[
torch.cat([c, z, s], 2),
torch.cat([z, o, z], 2),
torch.cat([-s, z, c], 2),
],
1,
)
def rotation_matrix_y(theta):
theta = theta.reshape(-1, 1, 1)
z = torch.zeros_like(theta)
o = torch.ones_like(theta)
c = torch.cos(theta)
s = torch.sin(theta)
return torch.cat(
[
torch.cat([o, z, z], 2),
torch.cat([z, c, -s], 2),
torch.cat([z, s, c], 2),
],
1,
)
def rotation_matrix_z(theta):
theta = theta.reshape(-1, 1, 1)
z = torch.zeros_like(theta)
o = torch.ones_like(theta)
c = torch.cos(theta)
s = torch.sin(theta)
return torch.cat(
[
torch.cat([c, -s, z], 2),
torch.cat([s, c, z], 2),
torch.cat([z, z, o], 2),
],
1,
)
def transform_kp(canonical_kp, yaw, pitch, roll, t, delta):
# [N,K,3] [N,] [N,] [N,] [N,3] [N,K,3]
# y, x, z
# w, h, d
rot_mat = rotation_matrix_y(pitch) @ rotation_matrix_x(yaw) @ rotation_matrix_z(roll)
transformed_kp = torch.matmul(rot_mat.unsqueeze(1), canonical_kp.unsqueeze(-1)).squeeze(-1) + t.unsqueeze(1) + delta
return transformed_kp, rot_mat
def transform_kp_with_new_pose(canonical_kp, yaw, pitch, roll, t, delta, new_yaw, new_pitch, new_roll):
# [N,K,3] [N,] [N,] [N,] [N,3] [N,K,3]
# y, x, z
# w, h, d
old_rot_mat = rotation_matrix_y(pitch) @ rotation_matrix_x(yaw) @ rotation_matrix_z(roll)
rot_mat = rotation_matrix_y(new_pitch) @ rotation_matrix_x(new_yaw) @ rotation_matrix_z(new_roll)
R = torch.matmul(rot_mat, torch.inverse(old_rot_mat))
transformed_kp = (
torch.matmul(rot_mat.unsqueeze(1), canonical_kp.unsqueeze(-1)).squeeze(-1)
+ t.unsqueeze(1)
+ torch.matmul(R.unsqueeze(1), delta.unsqueeze(-1)).squeeze(-1)
)
zt = 0.33 - transformed_kp[:, :, 2].mean()
transformed_kp = transformed_kp + torch.FloatTensor([0, 0, zt]).cuda()
return transformed_kp, rot_mat
def make_coordinate_grid_2d(spatial_size):
h, w = spatial_size
x = torch.arange(h).cuda()
y = torch.arange(w).cuda()
x = 2 * (x / (h - 1)) - 1
y = 2 * (y / (w - 1)) - 1
xx = x.reshape(-1, 1).repeat(1, w)
yy = y.reshape(1, -1).repeat(h, 1)
meshed = torch.cat([yy.unsqueeze(2), xx.unsqueeze(2)], 2)
return meshed
def make_coordinate_grid_3d(spatial_size):
d, h, w = spatial_size
z = torch.arange(d).cuda()
x = torch.arange(h).cuda()
y = torch.arange(w).cuda()
z = 2 * (z / (d - 1)) - 1
x = 2 * (x / (h - 1)) - 1
y = 2 * (y / (w - 1)) - 1
zz = z.reshape(-1, 1, 1).repeat(1, h, w)
xx = x.reshape(1, -1, 1).repeat(d, 1, w)
yy = y.reshape(1, 1, -1).repeat(d, h, 1)
meshed = torch.cat([yy.unsqueeze(3), xx.unsqueeze(3), zz.unsqueeze(3)], 3)
return meshed
def out2heatmap(out, temperature=0.1):
final_shape = out.shape
heatmap = out.reshape(final_shape[0], final_shape[1], -1)
heatmap = F.softmax(heatmap / temperature, dim=2)
heatmap = heatmap.reshape(*final_shape)
return heatmap
def heatmap2kp(heatmap):
shape = heatmap.shape
grid = make_coordinate_grid_3d(shape[2:]).unsqueeze(0).unsqueeze(0)
kp = (heatmap.unsqueeze(-1) * grid).sum(dim=(2, 3, 4))
return kp
def kp2gaussian_2d(kp, spatial_size, kp_variance=0.01):
N, K = kp.shape[:2]
coordinate_grid = make_coordinate_grid_2d(spatial_size).reshape(1, 1, *spatial_size, 2).repeat(N, K, 1, 1, 1)
mean = kp.reshape(N, K, 1, 1, 2)
mean_sub = coordinate_grid - mean
out = torch.exp(-0.5 * (mean_sub ** 2).sum(-1) / kp_variance)
return out
def kp2gaussian_3d(kp, spatial_size, kp_variance=0.01):
N, K = kp.shape[:2]
coordinate_grid = make_coordinate_grid_3d(spatial_size).reshape(1, 1, *spatial_size, 3).repeat(N, K, 1, 1, 1, 1)
mean = kp.reshape(N, K, 1, 1, 1, 3)
mean_sub = coordinate_grid - mean
out = torch.exp(-0.5 * (mean_sub ** 2).sum(-1) / kp_variance)
return out
def create_heatmap_representations(fs, kp_s, kp_d):
spatial_size = fs.shape[2:]
heatmap_d = kp2gaussian_3d(kp_d, spatial_size)
heatmap_s = kp2gaussian_3d(kp_s, spatial_size)
heatmap = heatmap_d - heatmap_s
zeros = torch.zeros(heatmap.shape[0], 1, *spatial_size).cuda()
# [N,21,16,64,64]
heatmap = torch.cat([zeros, heatmap], dim=1)
# [N,21,1,16,64,64]
heatmap = heatmap.unsqueeze(2)
return heatmap
def create_sparse_motions(fs, kp_s, kp_d, Rs, Rd):
N, _, D, H, W = fs.shape
K = kp_s.shape[1]
identity_grid = make_coordinate_grid_3d((D, H, W)).reshape(1, 1, D, H, W, 3).repeat(N, 1, 1, 1, 1, 1)
# [N,20,16,64,64,3]
coordinate_grid = identity_grid.repeat(1, K, 1, 1, 1, 1) - kp_d.reshape(N, K, 1, 1, 1, 3)
# [N,1,1,1,1,3,3]
jacobian = torch.matmul(Rs, torch.inverse(Rd)).unsqueeze(-3).unsqueeze(-3).unsqueeze(-3).unsqueeze(-3)
coordinate_grid = torch.matmul(jacobian, coordinate_grid.unsqueeze(-1)).squeeze(-1)
driving_to_source = coordinate_grid + kp_s.reshape(N, K, 1, 1, 1, 3)
sparse_motions = torch.cat([identity_grid, driving_to_source], dim=1)
# sparse_motions = driving_to_source
# [N,21,16,64,64,3]
return sparse_motions
def create_deformed_source_image2d(fs, sparse_motions):
N, _, H, W = fs.shape
K = sparse_motions.shape[1] - 1
# [N*21,4,16,64,64]
source_repeat = fs.unsqueeze(1).repeat(1, K + 1, 1, 1, 1).reshape(N * (K + 1), -1, H, W)
# [N*21,16,64,64,3]
sparse_motions = sparse_motions.reshape((N * (K + 1), H, W, -1))
# [N*21,4,16,64,64]
sparse_deformed = F.grid_sample(source_repeat, sparse_motions, align_corners=True)
sparse_deformed = sparse_deformed.reshape((N, K + 1, -1, H, W))
# [N,21,4,16,64,64]
return sparse_deformed
def create_deformed_source_image(fs, sparse_motions):
N, _, D, H, W = fs.shape
K = sparse_motions.shape[1] - 1
# [N*21,4,16,64,64]
source_repeat = fs.unsqueeze(1).repeat(1, K + 1, 1, 1, 1, 1).reshape(N * (K + 1), -1, D, H, W)
# [N*21,16,64,64,3]
sparse_motions = sparse_motions.reshape((N * (K + 1), D, H, W, -1))
# [N*21,4,16,64,64]
sparse_deformed = F.grid_sample(source_repeat, sparse_motions, align_corners=True)
sparse_deformed = sparse_deformed.reshape((N, K + 1, -1, D, H, W))
# [N,21,4,16,64,64]
return sparse_deformed
def apply_imagenet_normalization(input):
mean = input.new_tensor([0.485, 0.456, 0.406]).reshape(1, 3, 1, 1)
std = input.new_tensor([0.229, 0.224, 0.225]).reshape(1, 3, 1, 1)
output = (input - mean) / std
return output
def apply_vggface_normalization(input):
mean = input.new_tensor([129.186279296875, 104.76238250732422, 93.59396362304688]).reshape(1, 3, 1, 1)
std = input.new_tensor([1, 1, 1]).reshape(1, 3, 1, 1)
output = (input * 255 - mean) / std
return output