|
import numpy as np |
|
from utils.commons.hparams import hparams |
|
|
|
|
|
class NoneSchedule(object): |
|
def __init__(self, optimizer, lr): |
|
self.optimizer = optimizer |
|
self.constant_lr = lr |
|
self.step(0) |
|
|
|
def step(self, num_updates): |
|
self.lr = self.constant_lr |
|
for param_group in self.optimizer.param_groups: |
|
param_group['lr'] = self.lr |
|
return self.lr |
|
|
|
def get_lr(self): |
|
return self.optimizer.param_groups[0]['lr'] |
|
|
|
def get_last_lr(self): |
|
return self.get_lr() |
|
|
|
|
|
class RSQRTSchedule(NoneSchedule): |
|
def __init__(self, optimizer, lr, warmup_updates, hidden_size): |
|
self.optimizer = optimizer |
|
self.constant_lr = lr |
|
self.warmup_updates = warmup_updates |
|
self.hidden_size = hidden_size |
|
self.lr = lr |
|
for param_group in optimizer.param_groups: |
|
param_group['lr'] = self.lr |
|
self.step(0) |
|
|
|
def step(self, num_updates): |
|
constant_lr = self.constant_lr |
|
warmup = min(num_updates / self.warmup_updates, 1.0) |
|
rsqrt_decay = max(self.warmup_updates, num_updates) ** -0.5 |
|
rsqrt_hidden = self.hidden_size ** -0.5 |
|
self.lr = max(constant_lr * warmup * rsqrt_decay * rsqrt_hidden, 1e-7) |
|
for param_group in self.optimizer.param_groups: |
|
param_group['lr'] = self.lr |
|
return self.lr |
|
|
|
|
|
class WarmupSchedule(NoneSchedule): |
|
def __init__(self, optimizer, lr, warmup_updates): |
|
self.optimizer = optimizer |
|
self.constant_lr = self.lr = lr |
|
self.warmup_updates = warmup_updates |
|
for param_group in optimizer.param_groups: |
|
param_group['lr'] = self.lr |
|
self.step(0) |
|
|
|
def step(self, num_updates): |
|
constant_lr = self.constant_lr |
|
warmup = min(num_updates / self.warmup_updates, 1.0) |
|
self.lr = max(constant_lr * warmup, 1e-7) |
|
for param_group in self.optimizer.param_groups: |
|
param_group['lr'] = self.lr |
|
return self.lr |
|
|
|
|
|
class ExponentialSchedule(NoneSchedule): |
|
def __init__(self, optimizer, lr, warmup_updates): |
|
self.optimizer = optimizer |
|
self.constant_lr = self.lr = lr |
|
self.warmup_updates = warmup_updates |
|
for param_group in optimizer.param_groups: |
|
param_group['lr'] = self.lr |
|
self.step(0) |
|
|
|
def step(self, num_updates): |
|
constant_lr = self.constant_lr |
|
if self.warmup_updates > 0 and num_updates <= self.warmup_updates: |
|
warmup = min(num_updates / self.warmup_updates, 1.0) |
|
self.lr = max(constant_lr * warmup, 1e-7) |
|
else: |
|
new_lrate = constant_lr * (0.1 ** (num_updates / 250_000)) |
|
self.lr = max(new_lrate, hparams.get("min_lr", 1e-6)) |
|
for param_group in self.optimizer.param_groups: |
|
param_group['lr'] = self.lr |
|
return self.lr |
|
|
|
|
|
class ExponentialScheduleWithAudattNet(NoneSchedule): |
|
""" |
|
Default Scheduler in AD-NeRF |
|
for audatt net, since it starts at 20_0000 steps, we need to enlarge its lr |
|
in optimizer, we set param_groups[1] to optimize audatt net |
|
""" |
|
def __init__(self, optimizer, lr, warmup_updates=0): |
|
self.optimizer = optimizer |
|
self.constant_lr = self.lr = lr |
|
self.warmup_updates = warmup_updates |
|
optimizer.param_groups[0]['lr'] = self.lr |
|
optimizer.param_groups[1]['lr'] = self.lr * 5 |
|
self.step(0) |
|
|
|
def step(self, num_updates): |
|
constant_lr = self.constant_lr |
|
if self.warmup_updates > 0 and num_updates <= self.warmup_updates: |
|
warmup = min(num_updates / self.warmup_updates, 1.0) |
|
self.lr = max(constant_lr * warmup, 1e-7) |
|
else: |
|
new_lrate = constant_lr * (0.1 ** (num_updates / 250_000)) |
|
self.lr = max(new_lrate, 1e-7) |
|
|
|
self.optimizer.param_groups[0]['lr'] = self.lr |
|
self.optimizer.param_groups[1]['lr'] = self.lr * 5 |
|
return self.lr |
|
|
|
class ExponentialScheduleForRADNeRF(NoneSchedule): |
|
""" |
|
Default Scheduler in RAD-NeRF |
|
RAD-NeRF has two groups of params with different lr |
|
for tileGrid embedding, the lr=5e-3 |
|
for other network params, the lr=5e-4 |
|
""" |
|
def __init__(self, optimizer, lr, warmup_updates=0): |
|
self.optimizer = optimizer |
|
self.constant_lr = self.lr = lr |
|
self.warmup_updates = warmup_updates |
|
self.finetune_lips = hparams['finetune_lips'] |
|
self.finetune_lips_start_iter = hparams['finetune_lips_start_iter'] |
|
|
|
optimizer.param_groups[0]['lr'] = self.lr |
|
optimizer.param_groups[1]['lr'] = self.lr * 10 |
|
optimizer.param_groups[2]['lr'] = self.lr * 5 |
|
self.step(0) |
|
|
|
def step(self, num_updates): |
|
constant_lr = self.constant_lr |
|
if self.warmup_updates > 0 and num_updates <= self.warmup_updates: |
|
warmup = min(num_updates / self.warmup_updates, 1.0) |
|
self.lr = max(constant_lr * warmup, 1e-5) |
|
else: |
|
if self.finetune_lips and num_updates > self.finetune_lips_start_iter: |
|
new_lrate = constant_lr * (0.1 ** (num_updates / 250_000)) |
|
else: |
|
new_lrate = constant_lr * (0.1 ** (num_updates / 250_000)) |
|
|
|
self.lr = max(new_lrate, 1e-5) |
|
|
|
self.optimizer.param_groups[0]['lr'] = self.lr |
|
self.optimizer.param_groups[1]['lr'] = self.lr * 10 |
|
self.optimizer.param_groups[2]['lr'] = self.lr * 5 |
|
return self.lr |
|
|
|
|
|
class ExponentialScheduleForRADNeRFTorso(NoneSchedule): |
|
""" |
|
Default Scheduler in RAD-NeRF |
|
RAD-NeRF has two groups of params with different lr |
|
for tileGrid embedding, the lr=5e-3 |
|
for other network params, the lr=5e-4 |
|
""" |
|
def __init__(self, optimizer, lr, warmup_updates=0): |
|
self.optimizer = optimizer |
|
self.constant_lr = self.lr = lr |
|
self.warmup_updates = warmup_updates |
|
|
|
optimizer.param_groups[0]['lr'] = self.lr |
|
optimizer.param_groups[1]['lr'] = self.lr * 10 |
|
self.step(0) |
|
|
|
def step(self, num_updates): |
|
constant_lr = self.constant_lr |
|
if self.warmup_updates > 0 and num_updates <= self.warmup_updates: |
|
warmup = min(num_updates / self.warmup_updates, 1.0) |
|
self.lr = max(constant_lr * warmup, 1e-5) |
|
else: |
|
new_lrate = constant_lr * (0.1 ** (num_updates / 250_000)) |
|
self.lr = max(new_lrate, 1e-5) |
|
self.optimizer.param_groups[0]['lr'] = self.lr |
|
self.optimizer.param_groups[1]['lr'] = self.lr * 10 |
|
return self.lr |
|
|
|
|
|
class CosineSchedule(NoneSchedule): |
|
def __init__(self, optimizer, lr, warmup_updates, total_updates): |
|
self.optimizer = optimizer |
|
self.constant_lr = lr |
|
self.warmup_updates = warmup_updates |
|
self.total_updates = total_updates |
|
self.lr = lr |
|
self.assign_learning_rate(self.optimizer, self.lr) |
|
self.step(0) |
|
|
|
def assign_learning_rate(self, optimizer, new_lr): |
|
for param_group in optimizer.param_groups: |
|
param_group["lr"] = new_lr |
|
|
|
def _warmup_lr(self, base_lr, warmup_length, step): |
|
return base_lr * (step + 1) / warmup_length |
|
|
|
def step(self, num_updates): |
|
if self.warmup_updates > 0 and num_updates <= self.warmup_updates: |
|
lr = self._warmup_lr(self.lr, self.warmup_updates, num_updates) |
|
elif num_updates <= self.total_updates: |
|
e = num_updates - self.warmup_updates |
|
es = self.total_updates - self.warmup_updates |
|
lr = 0.5 * (1 + np.cos(np.pi * e / es)) * self.lr |
|
else: |
|
lr = 1e-5 |
|
lr = max(1e-5, lr) |
|
self.assign_learning_rate(self.optimizer, lr) |
|
return lr |
|
|