ameerazam08's picture
Upload folder using huggingface_hub
e34aada verified
raw
history blame
8.12 kB
import numpy as np
from utils.commons.hparams import hparams
class NoneSchedule(object):
def __init__(self, optimizer, lr):
self.optimizer = optimizer
self.constant_lr = lr
self.step(0)
def step(self, num_updates):
self.lr = self.constant_lr
for param_group in self.optimizer.param_groups:
param_group['lr'] = self.lr
return self.lr
def get_lr(self):
return self.optimizer.param_groups[0]['lr']
def get_last_lr(self):
return self.get_lr()
class RSQRTSchedule(NoneSchedule):
def __init__(self, optimizer, lr, warmup_updates, hidden_size):
self.optimizer = optimizer
self.constant_lr = lr
self.warmup_updates = warmup_updates
self.hidden_size = hidden_size
self.lr = lr
for param_group in optimizer.param_groups:
param_group['lr'] = self.lr
self.step(0)
def step(self, num_updates):
constant_lr = self.constant_lr
warmup = min(num_updates / self.warmup_updates, 1.0)
rsqrt_decay = max(self.warmup_updates, num_updates) ** -0.5
rsqrt_hidden = self.hidden_size ** -0.5
self.lr = max(constant_lr * warmup * rsqrt_decay * rsqrt_hidden, 1e-7)
for param_group in self.optimizer.param_groups:
param_group['lr'] = self.lr
return self.lr
class WarmupSchedule(NoneSchedule):
def __init__(self, optimizer, lr, warmup_updates):
self.optimizer = optimizer
self.constant_lr = self.lr = lr
self.warmup_updates = warmup_updates
for param_group in optimizer.param_groups:
param_group['lr'] = self.lr
self.step(0)
def step(self, num_updates):
constant_lr = self.constant_lr
warmup = min(num_updates / self.warmup_updates, 1.0)
self.lr = max(constant_lr * warmup, 1e-7)
for param_group in self.optimizer.param_groups:
param_group['lr'] = self.lr
return self.lr
class ExponentialSchedule(NoneSchedule):
def __init__(self, optimizer, lr, warmup_updates):
self.optimizer = optimizer
self.constant_lr = self.lr = lr
self.warmup_updates = warmup_updates
for param_group in optimizer.param_groups:
param_group['lr'] = self.lr
self.step(0)
def step(self, num_updates):
constant_lr = self.constant_lr
if self.warmup_updates > 0 and num_updates <= self.warmup_updates:
warmup = min(num_updates / self.warmup_updates, 1.0)
self.lr = max(constant_lr * warmup, 1e-7)
else:
new_lrate = constant_lr * (0.1 ** (num_updates / 250_000)) # decay by 0.1x for every 250k steps
self.lr = max(new_lrate, hparams.get("min_lr", 1e-6))
for param_group in self.optimizer.param_groups:
param_group['lr'] = self.lr
return self.lr
class ExponentialScheduleWithAudattNet(NoneSchedule):
"""
Default Scheduler in AD-NeRF
for audatt net, since it starts at 20_0000 steps, we need to enlarge its lr
in optimizer, we set param_groups[1] to optimize audatt net
"""
def __init__(self, optimizer, lr, warmup_updates=0):
self.optimizer = optimizer
self.constant_lr = self.lr = lr
self.warmup_updates = warmup_updates
optimizer.param_groups[0]['lr'] = self.lr
optimizer.param_groups[1]['lr'] = self.lr * 5
self.step(0)
def step(self, num_updates):
constant_lr = self.constant_lr
if self.warmup_updates > 0 and num_updates <= self.warmup_updates:
warmup = min(num_updates / self.warmup_updates, 1.0)
self.lr = max(constant_lr * warmup, 1e-7)
else:
new_lrate = constant_lr * (0.1 ** (num_updates / 250_000)) # decay by 0.1x for every 250k steps
self.lr = max(new_lrate, 1e-7)
self.optimizer.param_groups[0]['lr'] = self.lr
self.optimizer.param_groups[1]['lr'] = self.lr * 5
return self.lr
class ExponentialScheduleForRADNeRF(NoneSchedule):
"""
Default Scheduler in RAD-NeRF
RAD-NeRF has two groups of params with different lr
for tileGrid embedding, the lr=5e-3
for other network params, the lr=5e-4
"""
def __init__(self, optimizer, lr, warmup_updates=0):
self.optimizer = optimizer
self.constant_lr = self.lr = lr # 0.0005
self.warmup_updates = warmup_updates
self.finetune_lips = hparams['finetune_lips']
self.finetune_lips_start_iter = hparams['finetune_lips_start_iter']
optimizer.param_groups[0]['lr'] = self.lr # for Net_params in RAD-NeRF, lr starts from 0.0005
optimizer.param_groups[1]['lr'] = self.lr * 10 # for tileGrid, lr starts from 0.005
optimizer.param_groups[2]['lr'] = self.lr * 5 # for Att Net, lr starts from 0.0025
self.step(0)
def step(self, num_updates):
constant_lr = self.constant_lr
if self.warmup_updates > 0 and num_updates <= self.warmup_updates:
warmup = min(num_updates / self.warmup_updates, 1.0)
self.lr = max(constant_lr * warmup, 1e-5)
else:
if self.finetune_lips and num_updates > self.finetune_lips_start_iter:
new_lrate = constant_lr * (0.1 ** (num_updates / 250_000)) # decay by 0.05x for every 200k steps
else:
new_lrate = constant_lr * (0.1 ** (num_updates / 250_000)) # decay by 0.1x for every 200k steps
self.lr = max(new_lrate, 1e-5)
self.optimizer.param_groups[0]['lr'] = self.lr
self.optimizer.param_groups[1]['lr'] = self.lr * 10
self.optimizer.param_groups[2]['lr'] = self.lr * 5
return self.lr
class ExponentialScheduleForRADNeRFTorso(NoneSchedule):
"""
Default Scheduler in RAD-NeRF
RAD-NeRF has two groups of params with different lr
for tileGrid embedding, the lr=5e-3
for other network params, the lr=5e-4
"""
def __init__(self, optimizer, lr, warmup_updates=0):
self.optimizer = optimizer
self.constant_lr = self.lr = lr # 0.0005
self.warmup_updates = warmup_updates
optimizer.param_groups[0]['lr'] = self.lr # for Net_params in RAD-NeRF, lr starts from 0.0005
optimizer.param_groups[1]['lr'] = self.lr * 10 # for tileGrid, lr starts from 0.005
self.step(0)
def step(self, num_updates):
constant_lr = self.constant_lr
if self.warmup_updates > 0 and num_updates <= self.warmup_updates:
warmup = min(num_updates / self.warmup_updates, 1.0)
self.lr = max(constant_lr * warmup, 1e-5)
else:
new_lrate = constant_lr * (0.1 ** (num_updates / 250_000)) # decay by 0.1x for every 200k steps
self.lr = max(new_lrate, 1e-5)
self.optimizer.param_groups[0]['lr'] = self.lr
self.optimizer.param_groups[1]['lr'] = self.lr * 10
return self.lr
class CosineSchedule(NoneSchedule):
def __init__(self, optimizer, lr, warmup_updates, total_updates):
self.optimizer = optimizer
self.constant_lr = lr
self.warmup_updates = warmup_updates
self.total_updates = total_updates
self.lr = lr
self.assign_learning_rate(self.optimizer, self.lr)
self.step(0)
def assign_learning_rate(self, optimizer, new_lr):
for param_group in optimizer.param_groups:
param_group["lr"] = new_lr
def _warmup_lr(self, base_lr, warmup_length, step):
return base_lr * (step + 1) / warmup_length
def step(self, num_updates):
if self.warmup_updates > 0 and num_updates <= self.warmup_updates:
lr = self._warmup_lr(self.lr, self.warmup_updates, num_updates)
elif num_updates <= self.total_updates:
e = num_updates - self.warmup_updates
es = self.total_updates - self.warmup_updates
lr = 0.5 * (1 + np.cos(np.pi * e / es)) * self.lr
else:
lr = 1e-5
lr = max(1e-5, lr)
self.assign_learning_rate(self.optimizer, lr)
return lr