|
import librosa |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
|
|
def _stft(y, hop_size, win_size, fft_size): |
|
return librosa.stft(y=y, n_fft=fft_size, hop_length=hop_size, win_length=win_size, pad_mode='constant') |
|
|
|
|
|
def _istft(y, hop_size, win_size): |
|
return librosa.istft(y, hop_length=hop_size, win_length=win_size) |
|
|
|
|
|
def griffin_lim(S, hop_size, win_size, fft_size, angles=None, n_iters=30): |
|
angles = np.exp(2j * np.pi * np.random.rand(*S.shape)) if angles is None else angles |
|
S_complex = np.abs(S).astype(np.complex) |
|
y = _istft(S_complex * angles, hop_size, win_size) |
|
for i in range(n_iters): |
|
angles = np.exp(1j * np.angle(_stft(y, hop_size, win_size, fft_size))) |
|
y = _istft(S_complex * angles, hop_size, win_size) |
|
return y |
|
|
|
|
|
def istft(amp, ang, hop_size, win_size, fft_size, pad=False, window=None): |
|
spec = amp * torch.exp(1j * ang) |
|
spec_r = spec.real |
|
spec_i = spec.imag |
|
spec = torch.stack([spec_r, spec_i], -1) |
|
if window is None: |
|
window = torch.hann_window(win_size).to(amp.device) |
|
if pad: |
|
spec = F.pad(spec, [0, 0, 0, 1], mode='reflect') |
|
wav = torch.istft(spec, fft_size, hop_size, win_size) |
|
return wav |
|
|
|
|
|
def griffin_lim_torch(S, hop_size, win_size, fft_size, angles=None, n_iters=30): |
|
""" |
|
|
|
Examples: |
|
>>> x_stft = librosa.stft(wav, n_fft=fft_size, hop_length=hop_size, win_length=win_length, pad_mode="constant") |
|
>>> x_stft = x_stft[None, ...] |
|
>>> amp = np.abs(x_stft) |
|
>>> angle_init = np.exp(2j * np.pi * np.random.rand(*x_stft.shape)) |
|
>>> amp = torch.FloatTensor(amp) |
|
>>> wav = griffin_lim_torch(amp, angle_init, hparams) |
|
|
|
:param amp: [B, n_fft, T] |
|
:param ang: [B, n_fft, T] |
|
:return: [B, T_wav] |
|
""" |
|
angles = torch.exp(2j * np.pi * torch.rand(*S.shape)) if angles is None else angles |
|
window = torch.hann_window(win_size).to(S.device) |
|
y = istft(S, angles, hop_size, win_size, fft_size, window=window) |
|
for i in range(n_iters): |
|
x_stft = torch.stft(y, fft_size, hop_size, win_size, window) |
|
x_stft = x_stft[..., 0] + 1j * x_stft[..., 1] |
|
angles = torch.angle(x_stft) |
|
y = istft(S, angles, hop_size, win_size, fft_size, window=window) |
|
return y |
|
|
|
|
|
|
|
_mel_basis = None |
|
_inv_mel_basis = None |
|
|
|
|
|
def _build_mel_basis(audio_sample_rate, fft_size, audio_num_mel_bins, fmin, fmax): |
|
assert fmax <= audio_sample_rate // 2 |
|
return librosa.filters.mel(audio_sample_rate, fft_size, n_mels=audio_num_mel_bins, fmin=fmin, fmax=fmax) |
|
|
|
|
|
def _linear_to_mel(spectogram, audio_sample_rate, fft_size, audio_num_mel_bins, fmin, fmax): |
|
global _mel_basis |
|
if _mel_basis is None: |
|
_mel_basis = _build_mel_basis(audio_sample_rate, fft_size, audio_num_mel_bins, fmin, fmax) |
|
return np.dot(_mel_basis, spectogram) |
|
|
|
|
|
def _mel_to_linear(mel_spectrogram, audio_sample_rate, fft_size, audio_num_mel_bins, fmin, fmax): |
|
global _inv_mel_basis |
|
if _inv_mel_basis is None: |
|
_inv_mel_basis = np.linalg.pinv(_build_mel_basis(audio_sample_rate, fft_size, audio_num_mel_bins, fmin, fmax)) |
|
return np.maximum(1e-10, np.dot(_inv_mel_basis, mel_spectrogram)) |
|
|