|
import torch.nn as nn |
|
from .modules import Activation |
|
|
|
|
|
class SegmentationHead(nn.Sequential): |
|
def __init__(self, in_channels, out_channels, kernel_size=3, activation=None, upsampling=1): |
|
conv2d = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=kernel_size // 2) |
|
upsampling = nn.UpsamplingBilinear2d(scale_factor=upsampling) if upsampling > 1 else nn.Identity() |
|
activation = Activation(activation) |
|
super().__init__(conv2d, upsampling, activation) |
|
|
|
|
|
class ClassificationHead(nn.Sequential): |
|
def __init__(self, in_channels, classes, pooling="avg", dropout=0.2, activation=None): |
|
if pooling not in ("max", "avg"): |
|
raise ValueError("Pooling should be one of ('max', 'avg'), got {}.".format(pooling)) |
|
pool = nn.AdaptiveAvgPool2d(1) if pooling == "avg" else nn.AdaptiveMaxPool2d(1) |
|
flatten = nn.Flatten() |
|
dropout = nn.Dropout(p=dropout, inplace=True) if dropout else nn.Identity() |
|
linear = nn.Linear(in_channels, classes, bias=True) |
|
activation = Activation(activation) |
|
super().__init__(pool, flatten, dropout, linear, activation) |
|
|