File size: 14,010 Bytes
e34aada |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.utils.spectral_norm as spectral_norm
from modules.eg3ds.models.networks_stylegan2 import SynthesisBlock
from modules.eg3ds.models.superresolution import SynthesisBlockNoUp
from modules.eg3ds.models.superresolution import SuperresolutionHybrid8XDC
from modules.real3d.facev2v_warp.model import WarpBasedTorsoModelMediaPipe as torso_model_v1
from modules.real3d.facev2v_warp.model2 import WarpBasedTorsoModelMediaPipe as torso_model_v2
from utils.commons.hparams import hparams
from utils.commons.image_utils import dilate, erode
class SuperresolutionHybrid8XDC_Warp(SuperresolutionHybrid8XDC):
def __init__(self, channels, img_resolution, sr_num_fp16_res, sr_antialias, **block_kwargs):
super().__init__(channels, img_resolution, sr_num_fp16_res, sr_antialias, **block_kwargs)
if hparams.get("torso_model_version", "v1") == 'v1':
self.torso_model = torso_model_v1('standard')
elif hparams.get("torso_model_version", "v1") == 'v2':
self.torso_model = torso_model_v2('standard')
else: raise NotImplementedError()
# self.torso_model = WarpBasedTorsoModelMediaPipe('small')
self.torso_encoder = nn.Sequential(*[
nn.Conv2d(64, 256, 1, 1, padding=0),
])
self.bg_encoder = nn.Sequential(*[
nn.Conv2d(3, 64, 3, 1, padding=1),
nn.LeakyReLU(),
nn.Conv2d(64, 256, 3, 1, padding=1),
nn.LeakyReLU(),
nn.Conv2d(256, 256, 3, 1, padding=1),
])
if hparams.get("weight_fuse", True):
if hparams['htbsr_head_weight_fuse_mode'] in ['v1']:
fuse_in_dim = 512
# elif hparams['htbsr_head_weight_fuse_mode'] in ['v2']:
else:
fuse_in_dim = 512
self.head_torso_alpha_predictor = nn.Sequential(*[
nn.Conv2d(3+1+3, 32, 3, 1, padding=1),
nn.LeakyReLU(),
nn.Conv2d(32, 32, 3, 1, padding=1),
nn.LeakyReLU(),
nn.Conv2d(32, 1, 3, 1, padding=1),
nn.Sigmoid(),
])
self.fuse_head_torso_convs = nn.Sequential(*[
nn.Conv2d(256+256, 256, 3, 1, padding=1),
nn.LeakyReLU(),
nn.Conv2d(256, 256, 3, 1, padding=1),
])
self.head_torso_block = SynthesisBlockNoUp(256, 256, w_dim=512, resolution=256,
img_channels=3, is_last=False, use_fp16=False, conv_clamp=None, **block_kwargs)
else:
fuse_in_dim = 768
self.fuse_fg_bg_convs = nn.Sequential(*[
nn.Conv2d(fuse_in_dim, 64, 1, 1, padding=0),
nn.LeakyReLU(),
nn.Conv2d(64, 256, 3, 1, padding=1),
nn.LeakyReLU(),
nn.Conv2d(256, 256, 3, 1, padding=1),
])
def forward(self, rgb, x, ws, ref_torso_rgb, ref_bg_rgb, weights_img, segmap, kp_s, kp_d, target_torso_mask=None, **block_kwargs):
weights_img = weights_img.detach()
ws = ws[:, -1:, :].expand([rgb.shape[0], 3, -1])
if x.shape[-1] != self.input_resolution:
x = torch.nn.functional.interpolate(x, size=(self.input_resolution, self.input_resolution),
mode='bilinear', align_corners=False, antialias=self.sr_antialias)
rgb = torch.nn.functional.interpolate(rgb, size=(self.input_resolution, self.input_resolution),
mode='bilinear', align_corners=False, antialias=self.sr_antialias)
rgb_256 = torch.nn.functional.interpolate(rgb, size=(256, 256), mode='bilinear', align_corners=False, antialias=self.sr_antialias)
weights_256 = torch.nn.functional.interpolate(weights_img, size=(256, 256), mode='bilinear', align_corners=False, antialias=self.sr_antialias)
ref_torso_rgb_256 = torch.nn.functional.interpolate(ref_torso_rgb, size=(256, 256), mode='bilinear', align_corners=False, antialias=self.sr_antialias)
ref_bg_rgb_256 = torch.nn.functional.interpolate(ref_bg_rgb, size=(256, 256), mode='bilinear', align_corners=False, antialias=self.sr_antialias)
x, rgb = self.block0(x, rgb, ws, **block_kwargs) # sr branch, 128x128 head img ==> 256x256 head img
if hparams.get("torso_model_version", "v1") == 'v1':
rgb_torso, facev2v_ret = self.torso_model.forward(ref_torso_rgb_256, segmap, kp_s, kp_d, rgb_256.detach(), cal_loss=True, target_torso_mask=target_torso_mask)
elif hparams.get("torso_model_version", "v1") == 'v2':
rgb_torso, facev2v_ret = self.torso_model.forward(ref_torso_rgb_256, segmap, kp_s, kp_d, rgb_256.detach(), weights_256.detach(), cal_loss=True, target_torso_mask=target_torso_mask)
x_torso = self.torso_encoder(facev2v_ret['deformed_torso_hid'])
x_bg = self.bg_encoder(ref_bg_rgb_256)
if hparams.get("weight_fuse", True):
if hparams['htbsr_head_weight_fuse_mode'] == 'v1':
rgb = rgb * weights_256 + rgb_torso * (1-weights_256) # get person img
x = x * weights_256 + x_torso * (1-weights_256) # get person img
head_occlusion = weights_256.clone()
htbsr_head_threshold = hparams['htbsr_head_threshold']
head_occlusion[head_occlusion > htbsr_head_threshold] = 1.
torso_occlusion = torch.nn.functional.interpolate(facev2v_ret['occlusion_2'], size=(256, 256), mode='bilinear', align_corners=False, antialias=self.sr_antialias)
person_occlusion = (torso_occlusion + head_occlusion).clamp_(0,1)
rgb = rgb * person_occlusion + ref_bg_rgb_256 * (1-person_occlusion) # run6
x = torch.cat([x * person_occlusion, x_bg * (1-person_occlusion)], dim=1) # run6
x = self.fuse_fg_bg_convs(x)
x, rgb = self.block1(x, rgb, ws, **block_kwargs)
elif hparams['htbsr_head_weight_fuse_mode'] == 'v2':
# 用alpha-cat实现head torso的x的融合;替代了之前的直接alpha相加
head_torso_alpha = weights_256.clone()
head_torso_alpha[head_torso_alpha>weights_256] = weights_256[head_torso_alpha>weights_256]
rgb = rgb * head_torso_alpha + rgb_torso * (1-head_torso_alpha) # get person img
x = torch.cat([x * head_torso_alpha, x_torso * (1-head_torso_alpha)], dim=1)
x = self.fuse_head_torso_convs(x)
x, rgb = self.head_torso_block(x, rgb, ws, **block_kwargs)
head_occlusion = head_torso_alpha.clone()
# 鼓励weights与mask逼近后,不再需要手动修改head weights threshold到很小的值了,0.7就行
htbsr_head_threshold = hparams['htbsr_head_threshold']
head_occlusion[head_occlusion > htbsr_head_threshold] = 1.
torso_occlusion = torch.nn.functional.interpolate(facev2v_ret['occlusion_2'], size=(256, 256), mode='bilinear', align_corners=False, antialias=self.sr_antialias)
person_occlusion = (torso_occlusion + head_occlusion).clamp_(0,1)
rgb = rgb * person_occlusion + ref_bg_rgb_256 * (1-person_occlusion) # run6
x = torch.cat([x * person_occlusion, x_bg * (1-person_occlusion)], dim=1) # run6
x = self.fuse_fg_bg_convs(x)
x, rgb = self.block1(x, rgb, ws, **block_kwargs)
elif hparams['htbsr_head_weight_fuse_mode'] == 'v3':
# v2:用alpha-cat实现head torso的x的融合;替代了之前的直接alpha相加
# v3: 用nn额外后处理head mask
head_torso_alpha_inp = torch.cat([rgb.clamp(-1,1)/2+0.5, weights_256, rgb_torso.clamp(-1,1)/2+0.5], dim=1)
head_torso_alpha_ = self.head_torso_alpha_predictor(head_torso_alpha_inp)
head_torso_alpha = head_torso_alpha_.clone()
head_torso_alpha[head_torso_alpha>weights_256] = weights_256[head_torso_alpha>weights_256]
rgb = rgb * head_torso_alpha + rgb_torso * (1-head_torso_alpha) # get person img
x = torch.cat([x * head_torso_alpha, x_torso * (1-head_torso_alpha)], dim=1) # run6
x = self.fuse_head_torso_convs(x)
x, rgb = self.head_torso_block(x, rgb, ws, **block_kwargs)
head_occlusion = head_torso_alpha.clone()
htbsr_head_threshold = hparams['htbsr_head_threshold']
if not self.training:
head_occlusion_ = head_occlusion[head_occlusion>0.05]
htbsr_head_threshold = max(head_occlusion_.quantile(0.05), htbsr_head_threshold) # 过滤掉比0.05大的最后5% voxels
head_occlusion[head_occlusion > htbsr_head_threshold] = 1.
torso_occlusion = torch.nn.functional.interpolate(facev2v_ret['occlusion_2'], size=(256, 256), mode='bilinear', align_corners=False, antialias=self.sr_antialias)
person_occlusion = (torso_occlusion + head_occlusion).clamp_(0,1)
rgb = rgb * person_occlusion + ref_bg_rgb_256 * (1-person_occlusion) # run6
# Todo: 修改这里,把cat的occlusion去掉?或者把occlusion截断一下。
x = torch.cat([x * person_occlusion, x_bg * (1-person_occlusion)], dim=1) # run6
x = self.fuse_fg_bg_convs(x)
x, rgb = self.block1(x, rgb, ws, **block_kwargs)
else:
# v4 尝试直接用cat处理head-torso的hid的融合,发现不好
# v5 try1处理x的时候也把cat里的alpha去掉了,但是try1发现导致occlusion直接变1.所以去掉
# v5 try2给torso也加了threshold让他算rgb的时候更加sharp, 会导致torso周围黑边?
raise NotImplementedError()
else:
x = torch.cat([x, x_torso, x_bg], dim=1) # run6
x = self.fuse_fg_bg_convs(x)
x, rgb = self.block1(x, None, ws, **block_kwargs)
return rgb, facev2v_ret
@torch.no_grad()
def infer_forward_stage1(self, rgb, x, ws, ref_torso_rgb, ref_bg_rgb, weights_img, segmap, kp_s, kp_d, **block_kwargs):
weights_img = weights_img.detach()
ws = ws[:, -1:, :].repeat(1, 3, 1)
if x.shape[-1] != self.input_resolution:
x = torch.nn.functional.interpolate(x, size=(self.input_resolution, self.input_resolution),
mode='bilinear', align_corners=False, antialias=self.sr_antialias)
rgb = torch.nn.functional.interpolate(rgb, size=(self.input_resolution, self.input_resolution),
mode='bilinear', align_corners=False, antialias=self.sr_antialias)
rgb_256 = torch.nn.functional.interpolate(rgb, size=(256, 256), mode='bilinear', align_corners=False, antialias=self.sr_antialias)
weights_256 = torch.nn.functional.interpolate(weights_img, size=(256, 256), mode='bilinear', align_corners=False, antialias=self.sr_antialias)
ref_torso_rgb_256 = torch.nn.functional.interpolate(ref_torso_rgb, size=(256, 256), mode='bilinear', align_corners=False, antialias=self.sr_antialias)
ref_bg_rgb_256 = torch.nn.functional.interpolate(ref_bg_rgb, size=(256, 256), mode='bilinear', align_corners=False, antialias=self.sr_antialias)
x, rgb = self.block0(x, rgb, ws, **block_kwargs)
facev2v_ret = self.torso_model.infer_forward_stage1(ref_torso_rgb_256, segmap, kp_s, kp_d, rgb_256.detach(), cal_loss=True)
facev2v_ret['ref_bg_rgb_256'] = ref_bg_rgb_256
facev2v_ret['weights_256'] = weights_256
facev2v_ret['x'] = x
facev2v_ret['ws'] = ws
facev2v_ret['rgb'] = rgb
return facev2v_ret
@torch.no_grad()
def infer_forward_stage2(self, facev2v_ret, **block_kwargs):
x = facev2v_ret['x']
ws = facev2v_ret['ws']
rgb = facev2v_ret['rgb']
ref_bg_rgb_256 = facev2v_ret['ref_bg_rgb_256']
weights_256 = facev2v_ret['weights_256']
rgb_torso = self.torso_model.infer_forward_stage2(facev2v_ret)
x_torso = self.torso_encoder(facev2v_ret['deformed_torso_hid'])
x_bg = self.bg_encoder(ref_bg_rgb_256)
if hparams.get("weight_fuse", True):
rgb = rgb * weights_256 + rgb_torso * (1-weights_256) # get person img
x = x * weights_256 + x_torso * (1-weights_256) # get person img
head_occlusion = weights_256.clone()
head_occlusion[head_occlusion > 0.5] = 1.
torso_occlusion = torch.nn.functional.interpolate(facev2v_ret['occlusion_2'], size=(256, 256), mode='bilinear', align_corners=False, antialias=self.sr_antialias)
person_occlusion = (torso_occlusion + head_occlusion).clamp_(0,1)
rgb = rgb * person_occlusion + ref_bg_rgb_256 * (1-person_occlusion) # run6
x = torch.cat([x * person_occlusion, x_bg * (1-person_occlusion)], dim=1) # run6
x = self.fuse_fg_bg_convs(x)
x, rgb = self.block1(x, rgb, ws, **block_kwargs)
else:
x = torch.cat([x, x_torso, x_bg], dim=1) # run6
x = self.fuse_fg_bg_convs(x)
x, rgb = self.block1(x, None, ws, **block_kwargs)
return rgb, facev2v_ret
if __name__ == '__main__':
model = SuperresolutionHybrid8XDC_Warp(32,512,0, False)
model.cuda()
rgb = torch.randn([4, 3, 128, 128]).cuda()
x = torch.randn([4, 32, 128, 128]).cuda()
ws = torch.randn([4, 14, 512]).cuda()
ref_rgb = torch.randn([4, 3, 128, 128]).cuda()
ref_torso_rgb = torch.randn([4, 3, 128, 128]).cuda()
y = model(rgb, x, ws, ref_rgb, ref_torso_rgb)
print(" ") |