File size: 14,010 Bytes
e34aada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.utils.spectral_norm as spectral_norm
from modules.eg3ds.models.networks_stylegan2 import SynthesisBlock
from modules.eg3ds.models.superresolution import SynthesisBlockNoUp

from modules.eg3ds.models.superresolution import SuperresolutionHybrid8XDC
from modules.real3d.facev2v_warp.model import WarpBasedTorsoModelMediaPipe as torso_model_v1
from modules.real3d.facev2v_warp.model2 import WarpBasedTorsoModelMediaPipe as torso_model_v2

from utils.commons.hparams import hparams
from utils.commons.image_utils import dilate, erode


class SuperresolutionHybrid8XDC_Warp(SuperresolutionHybrid8XDC):
    def __init__(self, channels, img_resolution, sr_num_fp16_res, sr_antialias, **block_kwargs):
        super().__init__(channels, img_resolution, sr_num_fp16_res, sr_antialias, **block_kwargs)
        if hparams.get("torso_model_version", "v1") == 'v1':
            self.torso_model = torso_model_v1('standard')
        elif hparams.get("torso_model_version", "v1") == 'v2':
            self.torso_model = torso_model_v2('standard')
        else: raise NotImplementedError()
        # self.torso_model = WarpBasedTorsoModelMediaPipe('small')
        self.torso_encoder = nn.Sequential(*[
            nn.Conv2d(64, 256, 1, 1, padding=0),
        ])
        self.bg_encoder = nn.Sequential(*[
            nn.Conv2d(3, 64, 3, 1, padding=1),
            nn.LeakyReLU(),
            nn.Conv2d(64, 256, 3, 1, padding=1),
            nn.LeakyReLU(),
            nn.Conv2d(256, 256, 3, 1, padding=1),
        ])

        if hparams.get("weight_fuse", True):
            if hparams['htbsr_head_weight_fuse_mode'] in ['v1']:
                fuse_in_dim = 512
            # elif hparams['htbsr_head_weight_fuse_mode'] in ['v2']:
            else:
                fuse_in_dim = 512
                self.head_torso_alpha_predictor = nn.Sequential(*[
                    nn.Conv2d(3+1+3, 32, 3, 1, padding=1),
                    nn.LeakyReLU(),
                    nn.Conv2d(32, 32, 3, 1, padding=1),
                    nn.LeakyReLU(),
                    nn.Conv2d(32, 1, 3, 1, padding=1),
                    nn.Sigmoid(),
                ])
                self.fuse_head_torso_convs = nn.Sequential(*[
                    nn.Conv2d(256+256, 256, 3, 1, padding=1),
                    nn.LeakyReLU(),
                    nn.Conv2d(256, 256, 3, 1, padding=1),
                ])
                self.head_torso_block = SynthesisBlockNoUp(256, 256, w_dim=512, resolution=256,
                    img_channels=3, is_last=False, use_fp16=False, conv_clamp=None, **block_kwargs)
        else:
            fuse_in_dim = 768
        self.fuse_fg_bg_convs = nn.Sequential(*[
            nn.Conv2d(fuse_in_dim, 64, 1, 1, padding=0),
            nn.LeakyReLU(),
            nn.Conv2d(64, 256, 3, 1, padding=1),
            nn.LeakyReLU(),
            nn.Conv2d(256, 256, 3, 1, padding=1),
        ])

    def forward(self, rgb, x, ws, ref_torso_rgb, ref_bg_rgb, weights_img, segmap, kp_s, kp_d, target_torso_mask=None, **block_kwargs):
        weights_img = weights_img.detach()
        ws = ws[:, -1:, :].expand([rgb.shape[0], 3, -1])
        
        if x.shape[-1] != self.input_resolution:
            x = torch.nn.functional.interpolate(x, size=(self.input_resolution, self.input_resolution),
                                                  mode='bilinear', align_corners=False, antialias=self.sr_antialias)
            rgb = torch.nn.functional.interpolate(rgb, size=(self.input_resolution, self.input_resolution),
                                                  mode='bilinear', align_corners=False, antialias=self.sr_antialias)
        
        rgb_256 = torch.nn.functional.interpolate(rgb, size=(256, 256), mode='bilinear', align_corners=False, antialias=self.sr_antialias)
        weights_256 = torch.nn.functional.interpolate(weights_img, size=(256, 256), mode='bilinear', align_corners=False, antialias=self.sr_antialias)
        
        ref_torso_rgb_256 = torch.nn.functional.interpolate(ref_torso_rgb, size=(256, 256), mode='bilinear', align_corners=False, antialias=self.sr_antialias)
        
        ref_bg_rgb_256 = torch.nn.functional.interpolate(ref_bg_rgb, size=(256, 256), mode='bilinear', align_corners=False, antialias=self.sr_antialias)
        x, rgb = self.block0(x, rgb, ws, **block_kwargs) # sr branch, 128x128 head img ==> 256x256 head img
        if hparams.get("torso_model_version", "v1") == 'v1':
            rgb_torso, facev2v_ret = self.torso_model.forward(ref_torso_rgb_256, segmap, kp_s, kp_d, rgb_256.detach(), cal_loss=True, target_torso_mask=target_torso_mask)
        elif hparams.get("torso_model_version", "v1") == 'v2':
            rgb_torso, facev2v_ret = self.torso_model.forward(ref_torso_rgb_256, segmap, kp_s, kp_d, rgb_256.detach(), weights_256.detach(), cal_loss=True, target_torso_mask=target_torso_mask)
        x_torso = self.torso_encoder(facev2v_ret['deformed_torso_hid'])

        x_bg = self.bg_encoder(ref_bg_rgb_256)
        
        if hparams.get("weight_fuse", True):
            if hparams['htbsr_head_weight_fuse_mode'] == 'v1':
                rgb = rgb * weights_256 + rgb_torso * (1-weights_256) # get person img
                x = x * weights_256 + x_torso * (1-weights_256) # get person img
                head_occlusion = weights_256.clone()    
                htbsr_head_threshold = hparams['htbsr_head_threshold']
                head_occlusion[head_occlusion > htbsr_head_threshold] = 1.
                torso_occlusion = torch.nn.functional.interpolate(facev2v_ret['occlusion_2'], size=(256, 256), mode='bilinear', align_corners=False, antialias=self.sr_antialias)
                person_occlusion = (torso_occlusion + head_occlusion).clamp_(0,1)
                rgb = rgb * person_occlusion + ref_bg_rgb_256 * (1-person_occlusion) # run6
                x = torch.cat([x * person_occlusion, x_bg * (1-person_occlusion)], dim=1) # run6
                x = self.fuse_fg_bg_convs(x)
                x, rgb = self.block1(x, rgb, ws, **block_kwargs)

            elif hparams['htbsr_head_weight_fuse_mode'] == 'v2':
                # 用alpha-cat实现head torso的x的融合;替代了之前的直接alpha相加
                head_torso_alpha = weights_256.clone()
                head_torso_alpha[head_torso_alpha>weights_256] = weights_256[head_torso_alpha>weights_256]
                rgb = rgb * head_torso_alpha + rgb_torso * (1-head_torso_alpha) # get person img
                x = torch.cat([x * head_torso_alpha, x_torso * (1-head_torso_alpha)], dim=1) 
                x = self.fuse_head_torso_convs(x)
                x, rgb = self.head_torso_block(x, rgb, ws, **block_kwargs)

                head_occlusion = head_torso_alpha.clone()    
                # 鼓励weights与mask逼近后,不再需要手动修改head weights threshold到很小的值了,0.7就行
                htbsr_head_threshold = hparams['htbsr_head_threshold']
                head_occlusion[head_occlusion > htbsr_head_threshold] = 1.
                torso_occlusion = torch.nn.functional.interpolate(facev2v_ret['occlusion_2'], size=(256, 256), mode='bilinear', align_corners=False, antialias=self.sr_antialias)
                person_occlusion = (torso_occlusion + head_occlusion).clamp_(0,1)
                rgb = rgb * person_occlusion + ref_bg_rgb_256 * (1-person_occlusion) # run6
                x = torch.cat([x * person_occlusion, x_bg * (1-person_occlusion)], dim=1) # run6
                x = self.fuse_fg_bg_convs(x)
                x, rgb = self.block1(x, rgb, ws, **block_kwargs)

            elif hparams['htbsr_head_weight_fuse_mode'] == 'v3':
                # v2:用alpha-cat实现head torso的x的融合;替代了之前的直接alpha相加
                # v3: 用nn额外后处理head mask
                head_torso_alpha_inp = torch.cat([rgb.clamp(-1,1)/2+0.5, weights_256, rgb_torso.clamp(-1,1)/2+0.5], dim=1)
                head_torso_alpha_ = self.head_torso_alpha_predictor(head_torso_alpha_inp)
                head_torso_alpha = head_torso_alpha_.clone()
                head_torso_alpha[head_torso_alpha>weights_256] = weights_256[head_torso_alpha>weights_256]
                rgb = rgb * head_torso_alpha + rgb_torso * (1-head_torso_alpha) # get person img
                
                x = torch.cat([x * head_torso_alpha, x_torso * (1-head_torso_alpha)], dim=1) # run6
                x = self.fuse_head_torso_convs(x)
                x, rgb = self.head_torso_block(x, rgb, ws, **block_kwargs)

                head_occlusion = head_torso_alpha.clone()    
                htbsr_head_threshold = hparams['htbsr_head_threshold']
                if not self.training:
                    head_occlusion_ = head_occlusion[head_occlusion>0.05]
                    htbsr_head_threshold = max(head_occlusion_.quantile(0.05), htbsr_head_threshold) # 过滤掉比0.05大的最后5% voxels
                head_occlusion[head_occlusion > htbsr_head_threshold] = 1.
                torso_occlusion = torch.nn.functional.interpolate(facev2v_ret['occlusion_2'], size=(256, 256), mode='bilinear', align_corners=False, antialias=self.sr_antialias)
                person_occlusion = (torso_occlusion + head_occlusion).clamp_(0,1)
                rgb = rgb * person_occlusion + ref_bg_rgb_256 * (1-person_occlusion) # run6
                # Todo: 修改这里,把cat的occlusion去掉?或者把occlusion截断一下。
                x = torch.cat([x * person_occlusion, x_bg * (1-person_occlusion)], dim=1) # run6
                x = self.fuse_fg_bg_convs(x)
                x, rgb = self.block1(x, rgb, ws, **block_kwargs)

            else:
                # v4 尝试直接用cat处理head-torso的hid的融合,发现不好
                # v5 try1处理x的时候也把cat里的alpha去掉了,但是try1发现导致occlusion直接变1.所以去掉
                # v5 try2给torso也加了threshold让他算rgb的时候更加sharp,  会导致torso周围黑边?
                raise NotImplementedError()
        else:
            x = torch.cat([x, x_torso, x_bg], dim=1) # run6
            x = self.fuse_fg_bg_convs(x)
            x, rgb = self.block1(x, None, ws, **block_kwargs)
        return rgb, facev2v_ret
   
    @torch.no_grad()
    def infer_forward_stage1(self, rgb, x, ws, ref_torso_rgb, ref_bg_rgb, weights_img, segmap, kp_s, kp_d, **block_kwargs):
        weights_img = weights_img.detach()
        ws = ws[:, -1:, :].repeat(1, 3, 1)

        if x.shape[-1] != self.input_resolution:
            x = torch.nn.functional.interpolate(x, size=(self.input_resolution, self.input_resolution),
                                                  mode='bilinear', align_corners=False, antialias=self.sr_antialias)
            rgb = torch.nn.functional.interpolate(rgb, size=(self.input_resolution, self.input_resolution),
                                                  mode='bilinear', align_corners=False, antialias=self.sr_antialias)
        
        rgb_256 = torch.nn.functional.interpolate(rgb, size=(256, 256), mode='bilinear', align_corners=False, antialias=self.sr_antialias)
        weights_256 = torch.nn.functional.interpolate(weights_img, size=(256, 256), mode='bilinear', align_corners=False, antialias=self.sr_antialias)
        ref_torso_rgb_256 = torch.nn.functional.interpolate(ref_torso_rgb, size=(256, 256), mode='bilinear', align_corners=False, antialias=self.sr_antialias)
        ref_bg_rgb_256 = torch.nn.functional.interpolate(ref_bg_rgb, size=(256, 256), mode='bilinear', align_corners=False, antialias=self.sr_antialias)

        x, rgb = self.block0(x, rgb, ws, **block_kwargs)

        facev2v_ret = self.torso_model.infer_forward_stage1(ref_torso_rgb_256, segmap, kp_s, kp_d, rgb_256.detach(), cal_loss=True)
        facev2v_ret['ref_bg_rgb_256'] = ref_bg_rgb_256
        facev2v_ret['weights_256'] = weights_256
        facev2v_ret['x'] = x
        facev2v_ret['ws'] = ws
        facev2v_ret['rgb'] = rgb
        return facev2v_ret
    
    @torch.no_grad()
    def infer_forward_stage2(self, facev2v_ret, **block_kwargs):
        x = facev2v_ret['x']
        ws = facev2v_ret['ws']
        rgb = facev2v_ret['rgb']
        ref_bg_rgb_256 = facev2v_ret['ref_bg_rgb_256']
        weights_256 = facev2v_ret['weights_256']
        rgb_torso = self.torso_model.infer_forward_stage2(facev2v_ret)
        x_torso = self.torso_encoder(facev2v_ret['deformed_torso_hid'])
        x_bg = self.bg_encoder(ref_bg_rgb_256)
        
        if hparams.get("weight_fuse", True):
            rgb = rgb * weights_256 + rgb_torso * (1-weights_256) # get person img
            x = x * weights_256 + x_torso * (1-weights_256) # get person img

            head_occlusion = weights_256.clone()
            head_occlusion[head_occlusion > 0.5] = 1.
            torso_occlusion = torch.nn.functional.interpolate(facev2v_ret['occlusion_2'], size=(256, 256), mode='bilinear', align_corners=False, antialias=self.sr_antialias)
            person_occlusion = (torso_occlusion + head_occlusion).clamp_(0,1)

            rgb = rgb * person_occlusion + ref_bg_rgb_256 * (1-person_occlusion) # run6
            x = torch.cat([x * person_occlusion, x_bg * (1-person_occlusion)], dim=1) # run6
            x = self.fuse_fg_bg_convs(x)
            x, rgb = self.block1(x, rgb, ws, **block_kwargs)
        else:
            x = torch.cat([x, x_torso, x_bg], dim=1) # run6
            x = self.fuse_fg_bg_convs(x)
            x, rgb = self.block1(x, None, ws, **block_kwargs)
        return rgb, facev2v_ret
   

if __name__ == '__main__':
    model = SuperresolutionHybrid8XDC_Warp(32,512,0, False)
    model.cuda()
    rgb = torch.randn([4, 3, 128, 128]).cuda()
    x = torch.randn([4, 32, 128, 128]).cuda()
    ws = torch.randn([4, 14, 512]).cuda()
    ref_rgb = torch.randn([4, 3, 128, 128]).cuda()
    ref_torso_rgb = torch.randn([4, 3, 128, 128]).cuda()
    y = model(rgb, x, ws, ref_rgb, ref_torso_rgb)
    print(" ")