File size: 33,315 Bytes
e34aada |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 |
# ---------------------------------------------------------------
# Copyright (c) 2021, NVIDIA Corporation. All rights reserved.
#
# This work is licensed under the NVIDIA Source Code License
# ---------------------------------------------------------------
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
import warnings
from einops import rearrange
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model
from timm.models.vision_transformer import _cfg
import math
from mmcv.cnn import ConvModule
from utils.commons.hparams import hparams
def resize(input,
size=None,
scale_factor=None,
mode='nearest',
align_corners=None,
warning=True):
if warning:
if size is not None and align_corners:
input_h, input_w = tuple(int(x) for x in input.shape[2:])
output_h, output_w = tuple(int(x) for x in size)
if output_h > input_h or output_w > output_h:
if ((output_h > 1 and output_w > 1 and input_h > 1
and input_w > 1) and (output_h - 1) % (input_h - 1)
and (output_w - 1) % (input_w - 1)):
warnings.warn(
f'When align_corners={align_corners}, '
'the output would more aligned if '
f'input size {(input_h, input_w)} is `x+1` and '
f'out size {(output_h, output_w)} is `nx+1`')
if isinstance(size, torch.Size):
size = tuple(int(x) for x in size)
return F.interpolate(input, size, scale_factor, mode, align_corners)
class HeadMLP(nn.Module):
"""
Linear Embedding
"""
def __init__(self, input_dim=2048, embed_dim=768):
super().__init__()
self.proj = nn.Linear(input_dim, embed_dim)
def forward(self, x):
x = x.flatten(2).transpose(1, 2)
x = self.proj(x)
return x
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.dwconv = DWConv(hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
m.bias.data.zero_()
def forward(self, x, H, W):
x = self.fc1(x)
x = self.dwconv(x, H, W)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1):
super().__init__()
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
self.dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.q = nn.Linear(dim, dim, bias=qkv_bias)
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.sr_ratio = sr_ratio
if sr_ratio > 1:
self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
self.norm = nn.LayerNorm(dim)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
m.bias.data.zero_()
def forward(self, x, H, W):
B, N, C = x.shape
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
if self.sr_ratio > 1:
x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
x_ = self.norm(x_)
kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
else:
kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
k, v = kv[0], kv[1]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
m.bias.data.zero_()
def forward(self, x, H, W):
x = x + self.drop_path(self.attn(self.norm1(x), H, W))
x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
return x
class OverlapPatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
self.num_patches = self.H * self.W
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride,
padding=(patch_size[0] // 2, patch_size[1] // 2))
self.norm = nn.LayerNorm(embed_dim)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
m.bias.data.zero_()
def forward(self, x):
x = self.proj(x)
_, _, H, W = x.shape
x = x.flatten(2).transpose(1, 2)
x = self.norm(x)
return x, H, W
class MixVisionTransformer(nn.Module):
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512],
num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,
depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1]):
super().__init__()
self.num_classes = num_classes
self.depths = depths
# patch_embed
self.patch_embed1 = OverlapPatchEmbed(img_size=img_size, patch_size=7, stride=4, in_chans=in_chans,
embed_dim=embed_dims[0])
self.patch_embed2 = OverlapPatchEmbed(img_size=img_size // 4, patch_size=3, stride=2, in_chans=embed_dims[0],
embed_dim=embed_dims[1])
self.patch_embed3 = OverlapPatchEmbed(img_size=img_size // 8, patch_size=3, stride=2, in_chans=embed_dims[1],
embed_dim=embed_dims[2])
self.patch_embed4 = OverlapPatchEmbed(img_size=img_size // 16, patch_size=3, stride=2, in_chans=embed_dims[2],
embed_dim=embed_dims[3])
# transformer encoder
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
cur = 0
self.block1 = nn.ModuleList([Block(
dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
sr_ratio=sr_ratios[0])
for i in range(depths[0])])
self.norm1 = norm_layer(embed_dims[0])
cur += depths[0]
self.block2 = nn.ModuleList([Block(
dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
sr_ratio=sr_ratios[1])
for i in range(depths[1])])
self.norm2 = norm_layer(embed_dims[1])
cur += depths[1]
self.block3 = nn.ModuleList([Block(
dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
sr_ratio=sr_ratios[2])
for i in range(depths[2])])
self.norm3 = norm_layer(embed_dims[2])
cur += depths[2]
self.block4 = nn.ModuleList([Block(
dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
sr_ratio=sr_ratios[3])
for i in range(depths[3])])
self.norm4 = norm_layer(embed_dims[3])
# classification head
# self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
m.bias.data.zero_()
def reset_drop_path(self, drop_path_rate):
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
cur = 0
for i in range(self.depths[0]):
self.block1[i].drop_path.drop_prob = dpr[cur + i]
cur += self.depths[0]
for i in range(self.depths[1]):
self.block2[i].drop_path.drop_prob = dpr[cur + i]
cur += self.depths[1]
for i in range(self.depths[2]):
self.block3[i].drop_path.drop_prob = dpr[cur + i]
cur += self.depths[2]
for i in range(self.depths[3]):
self.block4[i].drop_path.drop_prob = dpr[cur + i]
def freeze_patch_emb(self):
self.patch_embed1.requires_grad = False
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'} # has pos_embed may be better
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self, x):
B = x.shape[0]
outs = []
# stage 1
x, H, W = self.patch_embed1(x)
for i, blk in enumerate(self.block1):
x = blk(x, H, W)
x = self.norm1(x)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
outs.append(x)
# stage 2
x, H, W = self.patch_embed2(x)
for i, blk in enumerate(self.block2):
x = blk(x, H, W)
x = self.norm2(x)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
outs.append(x)
# stage 3
x, H, W = self.patch_embed3(x)
for i, blk in enumerate(self.block3):
x = blk(x, H, W)
x = self.norm3(x)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
outs.append(x)
# stage 4
x, H, W = self.patch_embed4(x)
for i, blk in enumerate(self.block4):
x = blk(x, H, W)
x = self.norm4(x)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
outs.append(x)
return outs
def forward(self, x):
x = self.forward_features(x)
# x = self.head(x)
return x
class DWConv(nn.Module):
def __init__(self, dim=768):
super(DWConv, self).__init__()
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
def forward(self, x, H, W):
B, N, C = x.shape
x = x.transpose(1, 2).view(B, C, H, W)
x = self.dwconv(x)
x = x.flatten(2).transpose(1, 2)
return x
class mit_b0(MixVisionTransformer): # 3.319M
def __init__(self, **kwargs):
super(mit_b0, self).__init__(
patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
drop_rate=0.0, drop_path_rate=0.1)
self.load_state_dict(torch.load('checkpoints/pretrained_ckpts/mit_b0.pth'), strict=False)
class mit_b1(MixVisionTransformer): # 13.151M
def __init__(self, **kwargs):
super(mit_b1, self).__init__(
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
drop_rate=0.0, drop_path_rate=0.1)
self.load_state_dict(torch.load('checkpoints/pretrained_ckpts/mit_b1.pth'), strict=False)
class mit_b2(MixVisionTransformer): # 24.196M
def __init__(self, **kwargs):
super(mit_b2, self).__init__(
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1],
drop_rate=0.0, drop_path_rate=0.1)
self.load_state_dict(torch.load('checkpoints/pretrained_ckpts/mit_b2.pth'), strict=False)
class mit_b3(MixVisionTransformer): # 44.072M
def __init__(self, **kwargs):
super(mit_b3, self).__init__(
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],
drop_rate=0.0, drop_path_rate=0.1)
self.load_state_dict(torch.load('checkpoints/pretrained_ckpts/mit_b3.pth'), strict=False)
class mit_b4(MixVisionTransformer): # 60.843M
def __init__(self, **kwargs):
super(mit_b4, self).__init__(
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1],
drop_rate=0.0, drop_path_rate=0.1)
self.load_state_dict(torch.load('checkpoints/pretrained_ckpts/mit_b4.pth'), strict=False)
class mit_b5(MixVisionTransformer): # 81.443M
def __init__(self, **kwargs):
super(mit_b5, self).__init__(
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1],
drop_rate=0.0, drop_path_rate=0.1)
self.load_state_dict(torch.load('checkpoints/pretrained_ckpts/mit_b5.pth'), strict=False)
class SegFormerHead(nn.Module):
"""
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
"""
def __init__(self, segformer_scale='b3'):
super().__init__()
self.segformer_scale = segformer_scale
self.in_channels = [64, 128, 320, 512] if self.segformer_scale != 'b0' else [32, 64, 160, 256]
self.feature_strides = [4, 8, 16, 32]
self.in_index = [0, 1, 2, 3]
self.input_transform='multiple_select'
self.dropout = nn.Dropout2d(0.1)
c1_in_channels, c2_in_channels, c3_in_channels, c4_in_channels = self.in_channels
embedding_dim = self.embedding_dim = 256
self.linear_c4 = HeadMLP(input_dim=c4_in_channels, embed_dim=embedding_dim)
self.linear_c3 = HeadMLP(input_dim=c3_in_channels, embed_dim=embedding_dim)
self.linear_c2 = HeadMLP(input_dim=c2_in_channels, embed_dim=embedding_dim)
self.linear_c1 = HeadMLP(input_dim=c1_in_channels, embed_dim=embedding_dim)
if dist.is_initialized():
self.linear_fuse = ConvModule(
in_channels=embedding_dim*4,
out_channels=embedding_dim,
kernel_size=1,
norm_cfg=dict(type='SyncBN', requires_grad=True)
)
else:
self.linear_fuse = ConvModule(
in_channels=embedding_dim*4,
out_channels=embedding_dim,
kernel_size=1,
norm_cfg=dict(type='BN', requires_grad=True)
)
def _transform_inputs(self, inputs):
"""Transform inputs for decoder.
Args:
inputs (list[Tensor]): List of multi-level img features.
Returns:
Tensor: The transformed inputs
"""
if self.input_transform == 'multiple_select':
inputs = [inputs[i] for i in self.in_index]
else:
inputs = inputs[self.in_index]
return inputs
def forward(self, inputs):
x = self._transform_inputs(inputs) # len=4, 1/4,1/8,1/16,1/32
c1, c2, c3, c4 = x
############## MLP decoder on C1-C4 ###########
n, _, h, w = c4.shape
_c4 = self.linear_c4(c4).permute(0,2,1).reshape(n, -1, c4.shape[2], c4.shape[3])
_c4 = resize(_c4, size=c1.size()[2:],mode='bilinear',align_corners=False)
_c3 = self.linear_c3(c3).permute(0,2,1).reshape(n, -1, c3.shape[2], c3.shape[3])
_c3 = resize(_c3, size=c1.size()[2:],mode='bilinear',align_corners=False)
_c2 = self.linear_c2(c2).permute(0,2,1).reshape(n, -1, c2.shape[2], c2.shape[3])
_c2 = resize(_c2, size=c1.size()[2:],mode='bilinear',align_corners=False)
_c1 = self.linear_c1(c1).permute(0,2,1).reshape(n, -1, c1.shape[2], c1.shape[3])
_c = self.linear_fuse(torch.cat([_c4, _c3, _c2, _c1], dim=1))
x = self.dropout(_c)
return x
# from modules.hidenerf.models.networks_stylegan2 import Conv2dLayer
from modules.eg3ds.models.networks_stylegan2 import Conv2dLayer
class conv(nn.Module):
def __init__(self, num_in_layers, num_out_layers, kernel_size, up=1, down=1):
super(conv, self).__init__()
self.conv = Conv2dLayer(num_in_layers, num_out_layers, kernel_size, activation='elu', up=up, down=down)
self.bn = nn.InstanceNorm2d(
num_out_layers, track_running_stats=False, affine=True
)
def forward(self, x):
return self.bn(self.conv(x))
class SegFormerImg2PlaneBackbone(nn.Module):
def __init__(self, mode='b3'):
super().__init__()
mode2cls = {
'b0': mit_b0,
'b1': mit_b1,
'b2': mit_b2,
'b3': mit_b3,
'b4': mit_b4,
'b5': mit_b5,
}
self.mode = mode
self.mix_vit = mode2cls[mode]()
self.fuse_head = SegFormerHead(mode)
self.to_plane_cnn = nn.Sequential(*[
nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),
nn.LeakyReLU(negative_slope=0.01, inplace=True),
nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),
nn.LeakyReLU(negative_slope=0.01, inplace=True),
nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),
nn.LeakyReLU(negative_slope=0.01, inplace=True),
nn.UpsamplingBilinear2d(scale_factor=2.),
nn.Conv2d(in_channels=256, out_channels=96, kernel_size=3, stride=1, padding=1),
])
def forward(self, x):
"""
x: [B, 3, H=512, W=512]
return:
plane: [B, 96, H=256, W=256]
"""
feats = self.mix_vit(x)
fused_feat = self.fuse_head(feats)
planes = self.to_plane_cnn(fused_feat)
planes = planes.view(len(planes), 3, -1, planes.shape[-2], planes.shape[-1])
planes_xy = planes[:,0]
planes_xy = torch.flip(planes_xy, [2])
planes_xz = planes[:,1]
planes_xz = torch.flip(planes_xz, [2])
planes_zy = planes[:,2]
planes_zy = torch.flip(planes_zy, [2, 3])
planes = torch.stack([planes_xy, planes_xz, planes_zy], dim=1) # [N, 3, C, H, W]
return planes
class TemporalAttNet(nn.Module):
"""
Used to smooth the secc_plane with a window input
"""
def __init__(self, in_dim=96, seq_len=5):
super().__init__()
self.seq_len = seq_len
self.conv2d_layers = nn.Sequential(*[
# [B, C=96, T, H=224, W=224] ==> [B, 64, T, 112, 112]
nn.Conv3d(in_dim, 64, kernel_size=(1, 3, 3), stride=1, padding=(0, 1, 1)),
nn.LeakyReLU(0.02, True),
nn.Conv3d(64, 64, kernel_size=(1, 3, 3), stride=1, padding=(0, 1, 1)),
nn.LeakyReLU(0.02, True),
nn.AvgPool3d(kernel_size=(1, 2, 2), stride=(1,2,2), count_include_pad=False),
# [B, C=64, T, H=112, W=112] ==> [B, 32, T, 56, 56]
nn.Conv3d(64, 32, kernel_size=(1, 3, 3), stride=1, padding=(0, 1, 1)),
nn.LeakyReLU(0.02, True),
nn.Conv3d(32, 32, kernel_size=(1, 3, 3), stride=1, padding=(0, 1, 1)),
nn.LeakyReLU(0.02, True),
nn.AvgPool3d(kernel_size=(1, 2, 2), stride=(1,2,2), count_include_pad=False),
# [B, C=32, T, H=56, W=56] ==> [B, 16, T, 28, 28]
nn.Conv3d(32, 16, kernel_size=(1, 3, 3), stride=1, padding=(0, 1, 1)),
nn.LeakyReLU(0.02, True),
nn.Conv3d(16, 16, kernel_size=(1, 3, 3), stride=1, padding=(0, 1, 1)),
nn.LeakyReLU(0.02, True),
nn.AvgPool3d(kernel_size=(1, 2, 2), stride=(1,2,2), count_include_pad=False),
])
self.conv3d_layers = nn.Sequential(*[
# [B, C=16, T, H=28, W=28] ==> [B, 8, T, 14, 14]
nn.Conv3d(16, 8, kernel_size=3, stride=1, padding=1),
nn.LeakyReLU(0.02, True),
nn.AvgPool3d(kernel_size=(1, 2, 2), stride=(1,2,2), count_include_pad=False),
# [B, C=8, T, H=14, W=14] ==> [B, 8, T, 7, 7]
nn.Conv3d(8, 8, kernel_size=3, stride=1, padding=1),
nn.LeakyReLU(0.02, True),
nn.AvgPool3d(kernel_size=(1, 2, 2), stride=(1,2,2), count_include_pad=False),
# [B, C=8, T, H=7, W=7] ==> [B, 4, T, 1, 1]
nn.Conv3d(8, 4, kernel_size=3, stride=1, padding=1),
nn.LeakyReLU(0.02, True),
nn.Conv3d(4, 2, kernel_size=3, stride=1, padding=1),
nn.LeakyReLU(0.02, True),
nn.Conv3d(2, 1, kernel_size=3, stride=1, padding=1),
nn.LeakyReLU(0.02, True),
nn.AvgPool3d(kernel_size=(1, 7, 7), stride=1, count_include_pad=False),
])
self.to_attention_weights = nn.Sequential(
nn.Linear(in_features=self.seq_len, out_features=self.seq_len, bias=True),
nn.Softmax(dim=1)
)
def forward(self, x):
"""
x: [B, C, T, H, W]
y: [B, T] attention weights
out: [B, C, H, W]
"""
b,c,t,h,w = x.shape
y = F.interpolate(x, size=(t, 224, 224), mode='trilinear')
y = self.conv2d_layers(y) # [B, 16, 5, 28, 28]
y = self.conv3d_layers(y) # [B, 1, T, 1, 1]
y = y.squeeze(1, 3, 4) # [B, T]
assert y.ndim == 2
y = y.reshape([b, 1, t, 1, 1])
out = (y * x).sum(dim=2)
return out
class SegFormerSECC2PlaneBackbone(nn.Module):
def __init__(self, mode='b0', out_channels=96, pncc_cond_mode='cano_src_tgt'):
super().__init__()
mode2cls = {
'b0': mit_b0,
'b1': mit_b1,
'b2': mit_b2,
'b3': mit_b3,
'b4': mit_b4,
'b5': mit_b5,
}
self.mode = mode
self.pncc_cond_mode = pncc_cond_mode
in_dim = 9 if pncc_cond_mode == 'cano_src_tgt' else 6
self.prenet = Conv2dLayer(in_dim, 3, 1)
self.mix_vit = mode2cls[mode]()
self.fuse_head = SegFormerHead(mode)
self.to_plane_cnn = nn.Sequential(*[
nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),
nn.LeakyReLU(negative_slope=0.01, inplace=True),
nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),
nn.LeakyReLU(negative_slope=0.01, inplace=True),
nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),
nn.LeakyReLU(negative_slope=0.01, inplace=True),
nn.UpsamplingBilinear2d(scale_factor=2.),
nn.Conv2d(in_channels=256, out_channels=out_channels, kernel_size=3, stride=1, padding=1),
])
# if hparams['use_motion_smo_net']:
# self.motion_smo_win_size = hparams['motion_smo_win_size']
# self.smo_net = TemporalAttNet(in_dim=out_channels, seq_len=hparams['motion_smo_win_size'])
def forward(self, x):
"""
x: [B, 3, H=512, W=512] or [B, 3, T, H, W]
return:
plane: [B, 96, H=256, W=256]
"""
# if hparams['use_motion_smo_net']:
# assert x.ndim == 5
# x = rearrange(x, "n c t h w -> (n t) c h w", t=self.motion_smo_win_size)
x = self.prenet(x)
feats = self.mix_vit(x)
fused_feat = self.fuse_head(feats)
planes = self.to_plane_cnn(fused_feat)
# if hparams['use_motion_smo_net']:
# planes = rearrange(planes, "(n t) c h w -> n c t h w", t=self.motion_smo_win_size)
# planes = self.smo_net(planes)
planes = planes.view(len(planes), 3, -1, planes.shape[-2], planes.shape[-1])
planes_xy = planes[:,0]
planes_xy = torch.flip(planes_xy, [2])
planes_xz = planes[:,1]
planes_xz = torch.flip(planes_xz, [2])
planes_zy = planes[:,2]
planes_zy = torch.flip(planes_zy, [2, 3])
planes = torch.stack([planes_xy, planes_xz, planes_zy], dim=1) # [N, 3, C, H, W]
return planes
# from modules.hidenerf.new_modules.texture2plane_parser import Texture2PlaneParser
# class SegFormerTexture2PlaneBackbone(nn.Module):
# def __init__(self, mode='b1'):
# super().__init__()
# mode2cls = {
# 'b0': mit_b0,
# 'b1': mit_b1,
# 'b2': mit_b2,
# 'b3': mit_b3,
# 'b4': mit_b4,
# 'b5': mit_b5,
# }
# self.mode = mode
# self.prenet = Conv2dLayer(5, 3, 1)
# self.tex2plane_parser = Texture2PlaneParser()
# self.mix_vit = mode2cls[mode]()
# self.fuse_head = SegFormerHead(mode)
# if hparams.get("new_tex_mode", False) is True:
# self.to_plane_cnn1 = nn.Sequential(*[
# nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),
# nn.LeakyReLU(negative_slope=0.01, inplace=True),
# nn.UpsamplingBilinear2d(scale_factor=2.),
# ])
# self.to_plane_cnn2 = nn.Sequential(*[
# nn.Conv2d(in_channels=256*3, out_channels=256, kernel_size=3, stride=1, padding=1),
# nn.LeakyReLU(negative_slope=0.01, inplace=True),
# nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),
# nn.LeakyReLU(negative_slope=0.01, inplace=True),
# nn.Conv2d(in_channels=256, out_channels=96, kernel_size=3, stride=1, padding=1)
# ])
# else:
# self.to_plane_cnn = nn.Sequential(*[
# nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),
# nn.LeakyReLU(negative_slope=0.01, inplace=True),
# nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),
# nn.LeakyReLU(negative_slope=0.01, inplace=True),
# nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),
# nn.LeakyReLU(negative_slope=0.01, inplace=True),
# nn.UpsamplingBilinear2d(scale_factor=2.),
# nn.Conv2d(in_channels=256, out_channels=32, kernel_size=3, stride=1, padding=1),
# ])
# def forward(self, x, idx_pixel_to_plane):
# """
# x: [B, 3, H=512, W=512]
# return:
# plane: [B, 96, H=256, W=256]
# """
# feats = self.mix_vit(x)
# fused_feat = self.fuse_head(feats) # [B, 256, 128, 128]
# if hparams.get("new_tex_mode", False) is True:
# fused_feat = self.to_plane_cnn1(fused_feat) # [B, 96, 256, 256]
# fused_feat = fused_feat.unsqueeze(1).repeat([1, 3, 1, 1, 1]) # [B, 3, 96, 256, 256]
# tex_plane = self.tex2plane_parser(fused_feat, idx_pixel_to_plane) # [B, 3, 96, 256, 256]
# tex_plane = rearrange(tex_plane, "n k c h w -> n (k c) h w") # [B, 3*96, 256, 256]
# tex_plane = self.to_plane_cnn2(tex_plane) # [B, 96, 256, 256]
# tex_plane = rearrange(tex_plane, "n (k c) h w -> n k c h w", k=3, c=32) # [B, 3*96, 256, 256]
# else:
# fused_feat = self.to_plane_cnn(fused_feat) # [B, 32, 256, 256]
# fused_feat = fused_feat.unsqueeze(1).repeat([1, 3, 1, 1, 1]) # [B, 3, 32, 256, 256]
# tex_plane = self.tex2plane_parser(fused_feat, idx_pixel_to_plane) # [B, 3, 32, 256, 256]
# return tex_plane
if __name__ == '__main__':
import tqdm
img2plane = SegFormerTexture2PlaneBackbone()
img2plane.cuda()
x = torch.randn([4, 3, 512, 512]).cuda()
idx = torch.randint(low=0, high=128*128, size=[4, 3, 256*256]).cuda()
for _ in tqdm.trange(100):
y = img2plane(x, idx)
print(" ") |