File size: 11,171 Bytes
e34aada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import numpy as np
import torch
import copy
from modules.real3d.segformer import SegFormerImg2PlaneBackbone
from modules.img2plane.triplane import OSGDecoder
from modules.eg3ds.models.superresolution import SuperresolutionHybrid8XDC
from modules.eg3ds.volumetric_rendering.renderer import ImportanceRenderer
from modules.eg3ds.volumetric_rendering.ray_sampler import RaySampler
from modules.img2plane.img2plane_model import Img2PlaneModel

from utils.commons.hparams import hparams
import torch.nn.functional as F
import torch.nn as nn
from modules.real3d.facev2v_warp.layers import *
from einops import rearrange


class SameBlock3d(nn.Module):
    """
    Res block, preserve spatial resolution.
    """

    def __init__(self, in_features, kernel_size=3, padding=1):
        super(SameBlock3d, self).__init__()
        self.conv1 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size,
                               padding=padding, padding_mode='replicate')
        self.conv2 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size,
                               padding=padding, padding_mode='replicate')
        self.norm1 = nn.GroupNorm(4, in_features, affine=True)
        self.norm2 = nn.GroupNorm(4, in_features, affine=True)
        self.alpha = nn.Parameter(torch.tensor([0.01]))

    def forward(self, x):
        out = self.norm1(x)
        out = F.relu(out)
        out = self.conv1(out)
        out = self.norm2(out)
        out = F.relu(out)
        out = self.conv2(out)
        out = x + self.alpha * out
        return out


class Plane2GridModule(nn.Module):
    def __init__(self, triplane_depth=3, in_out_dim=96):
        super().__init__()
        self.triplane_depth = triplane_depth
        self.in_out_dim = in_out_dim
        if self.triplane_depth <= 3:
            self.num_layers_per_block = 1
        else:
            self.num_layers_per_block = 2
        self.res_blocks_3d = nn.Sequential(*[SameBlock3d(in_out_dim//3) for _ in range(self.num_layers_per_block)])
        
    def forward(self, x):
        x_inp = x # [1, 96*D, H, W]
        N, KCD, H, W = x.shape
        K, C, D = 3, KCD // self.triplane_depth // 3, self.triplane_depth
        assert C == self.in_out_dim // 3
        x = rearrange(x, 'n (k c d) h w -> (n k) c d h w', k=K, c=C, d=D) # ==> [1, 96, D, H, W]
        x = self.res_blocks_3d(x) # ==> [1, 96, D, H, W]
        x = rearrange(x, '(n k) c d h w -> n (k c d) h w', k=K)
        return x


class OSAvatar_Img2plane(torch.nn.Module):
    def __init__(self, hp=None):
        super().__init__()
        global hparams
        self.hparams = copy.copy(hparams) if hp is None else copy.copy(hp)
        hparams = self.hparams

        self.camera_dim = 25 # extrinsic 4x4 + intrinsic 3x3
        self.neural_rendering_resolution = hparams.get("neural_rendering_resolution", 128)
        self.w_dim = hparams['w_dim']
        self.img_resolution = hparams['final_resolution']
        self.triplane_depth = hparams.get("triplane_depth", 1)
        
        self.triplane_hid_dim = triplane_hid_dim = hparams.get("triplane_hid_dim", 32)
        # extract canonical triplane from src img
        self.img2plane_backbone = Img2PlaneModel(out_channels=3*triplane_hid_dim*self.triplane_depth, hp=hparams)
        if hparams.get("triplane_feature_type", "triplane") in ['trigrid_v2']:
            self.plane2grid_module = Plane2GridModule(triplane_depth=self.triplane_depth, in_out_dim=3*triplane_hid_dim) # add depth here
          
        # positional embedding
        self.decoder = OSGDecoder(triplane_hid_dim, {'decoder_lr_mul': 1, 'decoder_output_dim': triplane_hid_dim})
        # create super resolution network
        self.sr_num_fp16_res = 0
        self.sr_kwargs = {'channel_base': hparams['base_channel'], 'channel_max': hparams['max_channel'], 'fused_modconv_default': 'inference_only'}
        self.superresolution = SuperresolutionHybrid8XDC(channels=triplane_hid_dim, img_resolution=self.img_resolution, sr_num_fp16_res=self.sr_num_fp16_res, sr_antialias=True, large_sr=hparams.get('large_sr',False), **self.sr_kwargs)
        # Rendering Options
        self.renderer = ImportanceRenderer(hp=hparams)
        self.ray_sampler = RaySampler()
        self.rendering_kwargs = {'image_resolution': hparams['final_resolution'], 
                            'disparity_space_sampling': False, 
                            'clamp_mode': 'softplus',
                            'gpc_reg_prob': hparams['gpc_reg_prob'], 
                            'c_scale': 1.0, 
                            'superresolution_noise_mode': 'none', 
                            'density_reg': hparams['lambda_density_reg'], 'density_reg_p_dist': hparams['density_reg_p_dist'], 
                            'reg_type': 'l1', 'decoder_lr_mul': 1.0, 
                            'sr_antialias': True, 
                            'depth_resolution': hparams['num_samples_coarse'], 
                            'depth_resolution_importance': hparams['num_samples_fine'],
                            'ray_start': 'auto', 'ray_end': 'auto',
                            'box_warp': hparams.get("box_warp", 1.), # 3DMM坐标系==world坐标系,而3DMM的landmark的坐标均位于[-1,1]内
                            'avg_camera_radius': 2.7,
                            'avg_camera_pivot': [0, 0, 0.2],
                            'white_back': False,
                            }

    def cal_plane(self, img, cond=None, ret=None, **synthesis_kwargs):
        hparams = self.hparams
        planes = self.img2plane_backbone(img, cond, **synthesis_kwargs) #  [B, 3, C*D, H, W]
        if hparams.get("triplane_feature_type", "triplane") in ['triplane', 'trigrid']:
            planes = planes.view(len(planes), 3, self.triplane_hid_dim*self.triplane_depth, planes.shape[-2], planes.shape[-1])
        elif hparams.get("triplane_feature_type", "triplane") in ['trigrid_v2']:
            b, k, cd, h, w = planes.shape
            planes = planes.reshape([b, k*cd, h, w])
            planes = self.plane2grid_module(planes)
            planes = planes.reshape([b, k, cd, h, w])
        else:
            raise NotImplementedError()
        return planes # [B, 3, C*D, H, W]
    
    def _forward_sr(self, rgb_image, feature_image, cond, ret, **synthesis_kwargs):
        hparams = self.hparams
        ones_ws = torch.ones([feature_image.shape[0], 14, hparams['w_dim']], dtype=feature_image.dtype, device=feature_image.device)
        if hparams.get("sr_type", "vanilla") == 'vanilla':
            sr_image = self.superresolution(rgb_image, feature_image, ones_ws, noise_mode=self.rendering_kwargs['superresolution_noise_mode'], **{k:synthesis_kwargs[k] for k in synthesis_kwargs.keys() if k != 'noise_mode'})
        elif hparams.get("sr_type", "vanilla") == 'spade':
            sr_image = self.superresolution(rgb_image, feature_image, ones_ws, segmap=cond['ref_head_img'], noise_mode=self.rendering_kwargs['superresolution_noise_mode'], **{k:synthesis_kwargs[k] for k in synthesis_kwargs.keys() if k != 'noise_mode'})
        return sr_image

    def synthesis(self, img, camera, cond=None, ret=None, update_emas=False, cache_backbone=False, use_cached_backbone=False, **synthesis_kwargs):
        hparams = self.hparams
        if ret is None: ret = {}
        cam2world_matrix = camera[:, :16].view(-1, 4, 4)
        intrinsics = camera[:, 16:25].view(-1, 3, 3)

        neural_rendering_resolution = self.neural_rendering_resolution

        # Create a batch of rays for volume rendering
        ray_origins, ray_directions = self.ray_sampler(cam2world_matrix, intrinsics, neural_rendering_resolution)

        # Create triplanes by running StyleGAN backbone
        N, M, _ = ray_origins.shape
        if use_cached_backbone and self._last_planes is not None:
            planes = self._last_planes
        else:
            planes = self.cal_plane(img, cond, ret, **synthesis_kwargs)
        if cache_backbone:
            self._last_planes = planes
        
        # Perform volume rendering
        feature_samples, depth_samples, weights_samples, is_ray_valid = self.renderer(planes, self.decoder, ray_origins, ray_directions, self.rendering_kwargs) # channels last

        # Reshape into 'raw' neural-rendered image
        H = W = self.neural_rendering_resolution
        feature_image = feature_samples.permute(0, 2, 1).reshape(N, feature_samples.shape[-1], H, W).contiguous()
        weights_image = weights_samples.permute(0, 2, 1).reshape(N,1,H,W).contiguous() # [N,1,H,W]
        depth_image = depth_samples.permute(0, 2, 1).reshape(N, 1, H, W)

        if hparams.get("mask_invalid_rays", False):
            is_ray_valid_mask = is_ray_valid.reshape([feature_samples.shape[0], 1,self.neural_rendering_resolution,self.neural_rendering_resolution]) # [B, 1, H, W]
            feature_image[~is_ray_valid_mask.repeat([1,feature_image.shape[1],1,1])] = -1
            # feature_image[~is_ray_valid_mask.repeat([1,feature_image.shape[1],1,1])] *= 0
            # feature_image[~is_ray_valid_mask.repeat([1,feature_image.shape[1],1,1])] -= 1
            depth_image[~is_ray_valid_mask] = depth_image[is_ray_valid_mask].min().item()

        # Run superresolution to get final image
        rgb_image = feature_image[:, :3]
        ret['weights_img'] = weights_image
        sr_image = self._forward_sr(rgb_image, feature_image, cond, ret, **synthesis_kwargs)
        rgb_image = rgb_image.clamp(-1,1)
        sr_image = sr_image.clamp(-1,1)
        ret.update({'image_raw': rgb_image, 'image_depth': depth_image, 'image': sr_image, 'image_feature': feature_image[:, 3:], 'plane': planes})
        return ret

    def sample(self, coordinates, directions, img, cond=None, truncation_psi=1, truncation_cutoff=None, update_emas=False, ref_camera=None, **synthesis_kwargs):
        # Compute RGB features, density for arbitrary 3D coordinates. Mostly used for extracting shapes. 
        planes = self.cal_plane(img, cond, ret={}, ref_camera=ref_camera)
        return self.renderer.run_model(planes, self.decoder, coordinates, directions, self.rendering_kwargs)

    def forward(self, img, camera, cond=None, ret=None, update_emas=False, cache_backbone=False, use_cached_backbone=False, return_all=True, **synthesis_kwargs):
        # Render a batch of generated images.
        out = self.synthesis(img, camera, cond=cond, ret=ret, update_emas=update_emas, cache_backbone=cache_backbone, use_cached_backbone=use_cached_backbone, **synthesis_kwargs)
        return out