File size: 9,430 Bytes
e34aada |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import torch
import torch.nn.functional as F
import numpy as np
import torchvision
from torch import nn
from modules.real3d.facev2v_warp.func_utils import apply_imagenet_normalization, apply_vggface_normalization
@torch.jit.script
def fuse_math_min_mean_pos(x):
r"""Fuse operation min mean for hinge loss computation of positive
samples"""
minval = torch.min(x - 1, x * 0)
loss = -torch.mean(minval)
return loss
@torch.jit.script
def fuse_math_min_mean_neg(x):
r"""Fuse operation min mean for hinge loss computation of negative
samples"""
minval = torch.min(-x - 1, x * 0)
loss = -torch.mean(minval)
return loss
class _PerceptualNetwork(nn.Module):
def __init__(self, network, layer_name_mapping, layers):
super().__init__()
self.network = network.cuda()
self.layer_name_mapping = layer_name_mapping
self.layers = layers
for param in self.parameters():
param.requires_grad = False
def forward(self, x):
output = {}
for i, layer in enumerate(self.network):
x = layer(x)
layer_name = self.layer_name_mapping.get(i, None)
if layer_name in self.layers:
output[layer_name] = x
return output
def _vgg19(layers):
network = torchvision.models.vgg19()
state_dict = torch.utils.model_zoo.load_url(
"https://download.pytorch.org/models/vgg19-dcbb9e9d.pth", map_location=torch.device("cpu"), progress=True
)
network.load_state_dict(state_dict)
network = network.features
layer_name_mapping = {
1: "relu_1_1",
3: "relu_1_2",
6: "relu_2_1",
8: "relu_2_2",
11: "relu_3_1",
13: "relu_3_2",
15: "relu_3_3",
17: "relu_3_4",
20: "relu_4_1",
22: "relu_4_2",
24: "relu_4_3",
26: "relu_4_4",
29: "relu_5_1",
}
return _PerceptualNetwork(network, layer_name_mapping, layers)
def _vgg_face(layers):
network = torchvision.models.vgg16(num_classes=2622)
state_dict = torch.utils.model_zoo.load_url(
"http://www.robots.ox.ac.uk/~albanie/models/pytorch-mcn/" "vgg_face_dag.pth", map_location=torch.device("cpu"), progress=True
)
feature_layer_name_mapping = {
0: "conv1_1",
2: "conv1_2",
5: "conv2_1",
7: "conv2_2",
10: "conv3_1",
12: "conv3_2",
14: "conv3_3",
17: "conv4_1",
19: "conv4_2",
21: "conv4_3",
24: "conv5_1",
26: "conv5_2",
28: "conv5_3",
}
new_state_dict = {}
for k, v in feature_layer_name_mapping.items():
new_state_dict["features." + str(k) + ".weight"] = state_dict[v + ".weight"]
new_state_dict["features." + str(k) + ".bias"] = state_dict[v + ".bias"]
classifier_layer_name_mapping = {0: "fc6", 3: "fc7", 6: "fc8"}
for k, v in classifier_layer_name_mapping.items():
new_state_dict["classifier." + str(k) + ".weight"] = state_dict[v + ".weight"]
new_state_dict["classifier." + str(k) + ".bias"] = state_dict[v + ".bias"]
network.load_state_dict(new_state_dict)
layer_name_mapping = {
1: "relu_1_1",
3: "relu_1_2",
6: "relu_2_1",
8: "relu_2_2",
11: "relu_3_1",
13: "relu_3_2",
15: "relu_3_3",
18: "relu_4_1",
20: "relu_4_2",
22: "relu_4_3",
25: "relu_5_1",
}
return _PerceptualNetwork(network.features, layer_name_mapping, layers)
class PerceptualLoss(nn.Module):
def __init__(
self,
layers_weight={"relu_1_1": 0.03125, "relu_2_1": 0.0625, "relu_3_1": 0.125, "relu_4_1": 0.25, "relu_5_1": 1.0},
n_scale=3,
vgg19_loss_weight=1.0,
vggface_loss_weight=1.0,
):
super().__init__()
self.vgg19 = _vgg19(layers_weight.keys())
self.vggface = _vgg_face(layers_weight.keys())
self.mse_criterion = nn.MSELoss()
self.criterion = nn.L1Loss()
self.layers_weight, self.n_scale = layers_weight, n_scale
self.vgg19_loss_weight = vgg19_loss_weight
self.vggface_loss_weight = vggface_loss_weight
self.vgg19.eval()
self.vggface.eval()
def forward(self, input, target):
"""
input: [B, 3, H, W] in 0.~1. scale
"""
if input.shape[-1] != 512:
assert input.ndim == 4
input = F.interpolate(input, mode="bilinear", size=(512,512), antialias=True, align_corners=False)
target = F.interpolate(target, mode="bilinear", size=(512,512), antialias=True, align_corners=False)
self.vgg19.eval()
self.vggface.eval()
loss = 0
features_vggface_input = self.vggface(apply_vggface_normalization(input))
features_vggface_target = self.vggface(apply_vggface_normalization(target))
input = apply_imagenet_normalization(input)
target = apply_imagenet_normalization(target)
features_vgg19_input = self.vgg19(input)
features_vgg19_target = self.vgg19(target)
for layer, weight in self.layers_weight.items():
tmp = self.vggface_loss_weight * weight * self.criterion(features_vggface_input[layer], features_vggface_target[layer].detach()) / 255
if not torch.any(torch.isnan(tmp)):
loss += tmp
else:
loss += torch.zeros_like(tmp)
tmp = self.vgg19_loss_weight * weight * self.criterion(features_vgg19_input[layer], features_vgg19_target[layer].detach())
if not torch.any(torch.isnan(tmp)):
loss += tmp
else:
loss += torch.zeros_like(tmp)
for i in range(self.n_scale):
input = F.interpolate(input, mode="bilinear", scale_factor=0.5, align_corners=False, recompute_scale_factor=True)
target = F.interpolate(target, mode="bilinear", scale_factor=0.5, align_corners=False, recompute_scale_factor=True)
features_vgg19_input = self.vgg19(input)
features_vgg19_target = self.vgg19(target)
tmp = weight * self.criterion(features_vgg19_input[layer], features_vgg19_target[layer].detach())
if not torch.any(torch.isnan(tmp)):
loss += tmp
else:
loss += torch.zeros_like(tmp)
return loss
class GANLoss(nn.Module):
# Update generator: gan_loss(fake_output, True, False) + other losses
# Update discriminator: gan_loss(fake_output(detached), False, True) + gan_loss(real_output, True, True)
def __init__(self):
super().__init__()
def forward(self, dis_output, t_real, dis_update=True):
r"""GAN loss computation.
Args:
dis_output (tensor or list of tensors): Discriminator outputs.
t_real (bool): If ``True``, uses the real label as target, otherwise
uses the fake label as target.
dis_update (bool): If ``True``, the loss will be used to update the
discriminator, otherwise the generator.
Returns:
loss (tensor): Loss value.
"""
if dis_update:
if t_real:
loss = fuse_math_min_mean_pos(dis_output)
else:
loss = fuse_math_min_mean_neg(dis_output)
else:
loss = -torch.mean(dis_output)
return loss
class FeatureMatchingLoss(nn.Module):
def __init__(self):
super().__init__()
self.criterion = nn.L1Loss()
def forward(self, fake_features, real_features):
num_d = len(fake_features)
dis_weight = 1.0 / num_d
loss = fake_features[0][0].new_tensor(0)
for i in range(num_d):
for j in range(len(fake_features[i])):
tmp_loss = self.criterion(fake_features[i][j], real_features[i][j].detach())
loss += dis_weight * tmp_loss
return loss
class EquivarianceLoss(nn.Module):
def __init__(self):
super().__init__()
self.criterion = nn.L1Loss()
def forward(self, kp_d, reverse_kp):
loss = self.criterion(kp_d[:, :, :2], reverse_kp)
return loss
class KeypointPriorLoss(nn.Module):
def __init__(self, Dt=0.1, zt=0.33):
super().__init__()
self.Dt, self.zt = Dt, zt
def forward(self, kp_d):
# use distance matrix to avoid loop
dist_mat = torch.cdist(kp_d, kp_d).square()
loss = (
torch.max(0 * dist_mat, self.Dt - dist_mat).sum((1, 2)).mean()
+ torch.abs(kp_d[:, :, 2].mean(1) - self.zt).mean()
- kp_d.shape[1] * self.Dt
)
return loss
class HeadPoseLoss(nn.Module):
def __init__(self):
super().__init__()
self.criterion = nn.L1Loss()
def forward(self, yaw, pitch, roll, real_yaw, real_pitch, real_roll):
loss = (self.criterion(yaw, real_yaw.detach()) + self.criterion(pitch, real_pitch.detach()) + self.criterion(roll, real_roll.detach())) / 3
return loss / np.pi * 180
class DeformationPriorLoss(nn.Module):
def __init__(self):
super().__init__()
def forward(self, delta_d):
loss = delta_d.abs().mean()
return loss
if __name__ == '__main__':
loss_fn = PerceptualLoss()
x1 = torch.randn([4, 3, 512, 512]).cuda()
x2 = torch.randn([4, 3, 512, 512]).cuda()
loss = loss_fn(x1, x2) |