File size: 10,997 Bytes
e34aada |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
"""Equivariance metrics (EQ-T, EQ-T_frac, and EQ-R) from the paper
"Alias-Free Generative Adversarial Networks"."""
import copy
import numpy as np
import torch
import torch.fft
from modules.eg3ds.torch_utils.ops import upfirdn2d
from . import metric_utils
#----------------------------------------------------------------------------
# Utilities.
def sinc(x):
y = (x * np.pi).abs()
z = torch.sin(y) / y.clamp(1e-30, float('inf'))
return torch.where(y < 1e-30, torch.ones_like(x), z)
def lanczos_window(x, a):
x = x.abs() / a
return torch.where(x < 1, sinc(x), torch.zeros_like(x))
def rotation_matrix(angle):
angle = torch.as_tensor(angle).to(torch.float32)
mat = torch.eye(3, device=angle.device)
mat[0, 0] = angle.cos()
mat[0, 1] = angle.sin()
mat[1, 0] = -angle.sin()
mat[1, 1] = angle.cos()
return mat
#----------------------------------------------------------------------------
# Apply integer translation to a batch of 2D images. Corresponds to the
# operator T_x in Appendix E.1.
def apply_integer_translation(x, tx, ty):
_N, _C, H, W = x.shape
tx = torch.as_tensor(tx * W).to(dtype=torch.float32, device=x.device)
ty = torch.as_tensor(ty * H).to(dtype=torch.float32, device=x.device)
ix = tx.round().to(torch.int64)
iy = ty.round().to(torch.int64)
z = torch.zeros_like(x)
m = torch.zeros_like(x)
if abs(ix) < W and abs(iy) < H:
y = x[:, :, max(-iy,0) : H+min(-iy,0), max(-ix,0) : W+min(-ix,0)]
z[:, :, max(iy,0) : H+min(iy,0), max(ix,0) : W+min(ix,0)] = y
m[:, :, max(iy,0) : H+min(iy,0), max(ix,0) : W+min(ix,0)] = 1
return z, m
#----------------------------------------------------------------------------
# Apply integer translation to a batch of 2D images. Corresponds to the
# operator T_x in Appendix E.2.
def apply_fractional_translation(x, tx, ty, a=3):
_N, _C, H, W = x.shape
tx = torch.as_tensor(tx * W).to(dtype=torch.float32, device=x.device)
ty = torch.as_tensor(ty * H).to(dtype=torch.float32, device=x.device)
ix = tx.floor().to(torch.int64)
iy = ty.floor().to(torch.int64)
fx = tx - ix
fy = ty - iy
b = a - 1
z = torch.zeros_like(x)
zx0 = max(ix - b, 0)
zy0 = max(iy - b, 0)
zx1 = min(ix + a, 0) + W
zy1 = min(iy + a, 0) + H
if zx0 < zx1 and zy0 < zy1:
taps = torch.arange(a * 2, device=x.device) - b
filter_x = (sinc(taps - fx) * sinc((taps - fx) / a)).unsqueeze(0)
filter_y = (sinc(taps - fy) * sinc((taps - fy) / a)).unsqueeze(1)
y = x
y = upfirdn2d.filter2d(y, filter_x / filter_x.sum(), padding=[b,a,0,0])
y = upfirdn2d.filter2d(y, filter_y / filter_y.sum(), padding=[0,0,b,a])
y = y[:, :, max(b-iy,0) : H+b+a+min(-iy-a,0), max(b-ix,0) : W+b+a+min(-ix-a,0)]
z[:, :, zy0:zy1, zx0:zx1] = y
m = torch.zeros_like(x)
mx0 = max(ix + a, 0)
my0 = max(iy + a, 0)
mx1 = min(ix - b, 0) + W
my1 = min(iy - b, 0) + H
if mx0 < mx1 and my0 < my1:
m[:, :, my0:my1, mx0:mx1] = 1
return z, m
#----------------------------------------------------------------------------
# Construct an oriented low-pass filter that applies the appropriate
# bandlimit with respect to the input and output of the given affine 2D
# image transformation.
def construct_affine_bandlimit_filter(mat, a=3, amax=16, aflt=64, up=4, cutoff_in=1, cutoff_out=1):
assert a <= amax < aflt
mat = torch.as_tensor(mat).to(torch.float32)
# Construct 2D filter taps in input & output coordinate spaces.
taps = ((torch.arange(aflt * up * 2 - 1, device=mat.device) + 1) / up - aflt).roll(1 - aflt * up)
yi, xi = torch.meshgrid(taps, taps)
xo, yo = (torch.stack([xi, yi], dim=2) @ mat[:2, :2].t()).unbind(2)
# Convolution of two oriented 2D sinc filters.
fi = sinc(xi * cutoff_in) * sinc(yi * cutoff_in)
fo = sinc(xo * cutoff_out) * sinc(yo * cutoff_out)
f = torch.fft.ifftn(torch.fft.fftn(fi) * torch.fft.fftn(fo)).real
# Convolution of two oriented 2D Lanczos windows.
wi = lanczos_window(xi, a) * lanczos_window(yi, a)
wo = lanczos_window(xo, a) * lanczos_window(yo, a)
w = torch.fft.ifftn(torch.fft.fftn(wi) * torch.fft.fftn(wo)).real
# Construct windowed FIR filter.
f = f * w
# Finalize.
c = (aflt - amax) * up
f = f.roll([aflt * up - 1] * 2, dims=[0,1])[c:-c, c:-c]
f = torch.nn.functional.pad(f, [0, 1, 0, 1]).reshape(amax * 2, up, amax * 2, up)
f = f / f.sum([0,2], keepdim=True) / (up ** 2)
f = f.reshape(amax * 2 * up, amax * 2 * up)[:-1, :-1]
return f
#----------------------------------------------------------------------------
# Apply the given affine transformation to a batch of 2D images.
def apply_affine_transformation(x, mat, up=4, **filter_kwargs):
_N, _C, H, W = x.shape
mat = torch.as_tensor(mat).to(dtype=torch.float32, device=x.device)
# Construct filter.
f = construct_affine_bandlimit_filter(mat, up=up, **filter_kwargs)
assert f.ndim == 2 and f.shape[0] == f.shape[1] and f.shape[0] % 2 == 1
p = f.shape[0] // 2
# Construct sampling grid.
theta = mat.inverse()
theta[:2, 2] *= 2
theta[0, 2] += 1 / up / W
theta[1, 2] += 1 / up / H
theta[0, :] *= W / (W + p / up * 2)
theta[1, :] *= H / (H + p / up * 2)
theta = theta[:2, :3].unsqueeze(0).repeat([x.shape[0], 1, 1])
g = torch.nn.functional.affine_grid(theta, x.shape, align_corners=False)
# Resample image.
y = upfirdn2d.upsample2d(x=x, f=f, up=up, padding=p)
z = torch.nn.functional.grid_sample(y, g, mode='bilinear', padding_mode='zeros', align_corners=False)
# Form mask.
m = torch.zeros_like(y)
c = p * 2 + 1
m[:, :, c:-c, c:-c] = 1
m = torch.nn.functional.grid_sample(m, g, mode='nearest', padding_mode='zeros', align_corners=False)
return z, m
#----------------------------------------------------------------------------
# Apply fractional rotation to a batch of 2D images. Corresponds to the
# operator R_\alpha in Appendix E.3.
def apply_fractional_rotation(x, angle, a=3, **filter_kwargs):
angle = torch.as_tensor(angle).to(dtype=torch.float32, device=x.device)
mat = rotation_matrix(angle)
return apply_affine_transformation(x, mat, a=a, amax=a*2, **filter_kwargs)
#----------------------------------------------------------------------------
# Modify the frequency content of a batch of 2D images as if they had undergo
# fractional rotation -- but without actually rotating them. Corresponds to
# the operator R^*_\alpha in Appendix E.3.
def apply_fractional_pseudo_rotation(x, angle, a=3, **filter_kwargs):
angle = torch.as_tensor(angle).to(dtype=torch.float32, device=x.device)
mat = rotation_matrix(-angle)
f = construct_affine_bandlimit_filter(mat, a=a, amax=a*2, up=1, **filter_kwargs)
y = upfirdn2d.filter2d(x=x, f=f)
m = torch.zeros_like(y)
c = f.shape[0] // 2
m[:, :, c:-c, c:-c] = 1
return y, m
#----------------------------------------------------------------------------
# Compute the selected equivariance metrics for the given generator.
def compute_equivariance_metrics(opts, num_samples, batch_size, translate_max=0.125, rotate_max=1, compute_eqt_int=False, compute_eqt_frac=False, compute_eqr=False):
assert compute_eqt_int or compute_eqt_frac or compute_eqr
# Setup generator and labels.
G = copy.deepcopy(opts.G).eval().requires_grad_(False).to(opts.device)
I = torch.eye(3, device=opts.device)
M = getattr(getattr(getattr(G, 'synthesis', None), 'input', None), 'transform', None)
if M is None:
raise ValueError('Cannot compute equivariance metrics; the given generator does not support user-specified image transformations')
c_iter = metric_utils.iterate_random_labels(opts=opts, batch_size=batch_size)
# Sampling loop.
sums = None
progress = opts.progress.sub(tag='eq sampling', num_items=num_samples)
for batch_start in range(0, num_samples, batch_size * opts.num_gpus):
progress.update(batch_start)
s = []
# Randomize noise buffers, if any.
for name, buf in G.named_buffers():
if name.endswith('.noise_const'):
buf.copy_(torch.randn_like(buf))
# Run mapping network.
z = torch.randn([batch_size, G.z_dim], device=opts.device)
c = next(c_iter)
ws = G.mapping(z=z, c=c)
# Generate reference image.
M[:] = I
orig = G.synthesis(ws=ws, noise_mode='const', **opts.G_kwargs)
# Integer translation (EQ-T).
if compute_eqt_int:
t = (torch.rand(2, device=opts.device) * 2 - 1) * translate_max
t = (t * G.img_resolution).round() / G.img_resolution
M[:] = I
M[:2, 2] = -t
img = G.synthesis(ws=ws, noise_mode='const', **opts.G_kwargs)
ref, mask = apply_integer_translation(orig, t[0], t[1])
s += [(ref - img).square() * mask, mask]
# Fractional translation (EQ-T_frac).
if compute_eqt_frac:
t = (torch.rand(2, device=opts.device) * 2 - 1) * translate_max
M[:] = I
M[:2, 2] = -t
img = G.synthesis(ws=ws, noise_mode='const', **opts.G_kwargs)
ref, mask = apply_fractional_translation(orig, t[0], t[1])
s += [(ref - img).square() * mask, mask]
# Rotation (EQ-R).
if compute_eqr:
angle = (torch.rand([], device=opts.device) * 2 - 1) * (rotate_max * np.pi)
M[:] = rotation_matrix(-angle)
img = G.synthesis(ws=ws, noise_mode='const', **opts.G_kwargs)
ref, ref_mask = apply_fractional_rotation(orig, angle)
pseudo, pseudo_mask = apply_fractional_pseudo_rotation(img, angle)
mask = ref_mask * pseudo_mask
s += [(ref - pseudo).square() * mask, mask]
# Accumulate results.
s = torch.stack([x.to(torch.float64).sum() for x in s])
sums = sums + s if sums is not None else s
progress.update(num_samples)
# Compute PSNRs.
if opts.num_gpus > 1:
torch.distributed.all_reduce(sums)
sums = sums.cpu()
mses = sums[0::2] / sums[1::2]
psnrs = np.log10(2) * 20 - mses.log10() * 10
psnrs = tuple(psnrs.numpy())
return psnrs[0] if len(psnrs) == 1 else psnrs
#----------------------------------------------------------------------------
|