File size: 1,493 Bytes
e34aada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import numpy as np
import torch


def dct(x, norm=None):
    x_shape = x.shape
    N = x_shape[-1]
    x = x.contiguous().view(-1, N)

    v = torch.cat([x[:, ::2], x[:, 1::2].flip([1])], dim=1)

    Vc = torch.view_as_real(torch.fft.fft(v, dim=1))  # add this line

    k = - torch.arange(N, dtype=x.dtype, device=x.device)[None, :] * np.pi / (2 * N)
    W_r = torch.cos(k)
    W_i = torch.sin(k)

    V = Vc[:, :, 0] * W_r - Vc[:, :, 1] * W_i

    if norm == 'ortho':
        V[:, 0] /= np.sqrt(N) * 2
        V[:, 1:] /= np.sqrt(N / 2) * 2

    V = 2 * V.view(*x_shape)

    return V


def idct(X, norm=None):
    x_shape = X.shape
    N = x_shape[-1]

    X_v = X.contiguous().view(-1, x_shape[-1]) / 2

    if norm == 'ortho':
        X_v[:, 0] *= np.sqrt(N) * 2
        X_v[:, 1:] *= np.sqrt(N / 2) * 2

    k = torch.arange(x_shape[-1], dtype=X.dtype, device=X.device)[None, :] * np.pi / (2 * N)
    W_r = torch.cos(k)
    W_i = torch.sin(k)

    V_t_r = X_v
    V_t_i = torch.cat([X_v[:, :1] * 0, -X_v.flip([1])[:, :-1]], dim=1)

    V_r = V_t_r * W_r - V_t_i * W_i
    V_i = V_t_r * W_i + V_t_i * W_r

    V = torch.cat([V_r.unsqueeze(2), V_i.unsqueeze(2)], dim=2)

    # v = torch.irfft(V, 1, onesided=False)                             # comment this line
    v = torch.fft.irfft(torch.view_as_complex(V), n=V.shape[1], dim=1)  # add this line

    x = v.new_zeros(v.shape)
    x[:, ::2] += v[:, :N - (N // 2)]
    x[:, 1::2] += v.flip([1])[:, :N // 2]

    return x.view(*x_shape)