File size: 19,179 Bytes
e34aada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import glob
import json
import os
import cv2
import pickle
import random
import re
import subprocess
from functools import partial

import librosa.core
import numpy as np
import torch
import torch.distributions
import torch.distributed as dist
import torch.optim
import torch.utils.data

from utils.commons.indexed_datasets import IndexedDataset
from torch.utils.data import Dataset, DataLoader

import torch.nn.functional as F
import pandas as pd
from tqdm import tqdm
import csv
from utils.commons.hparams import hparams, set_hparams
from utils.commons.meters import Timer
from data_util.face3d_helper import Face3DHelper
from utils.audio import librosa_wav2mfcc
from utils.commons.dataset_utils import collate_xd
from utils.commons.tensor_utils  import convert_to_tensor
from data_gen.utils.process_video.extract_segment_imgs import decode_segmap_mask_from_image
from data_gen.eg3d.convert_to_eg3d_convention import get_eg3d_convention_camera_pose_intrinsic
from utils.commons.image_utils import load_image_as_uint8_tensor
from modules.eg3ds.camera_utils.pose_sampler import UnifiedCameraPoseSampler


def sample_idx(img_dir, num_frames):
    cnt = 0
    while True:
        cnt += 1
        if cnt > 1000:
            print(f"recycle for more than 1000 times, check this {img_dir}")
        idx = random.randint(0, num_frames-1)
        ret1 = find_img_name(img_dir, idx)
        if ret1 == 'None':
            continue
        ret2 = find_img_name(img_dir.replace("/gt_imgs/","/head_imgs/"), idx)
        if ret2 == 'None':
            continue
        ret3 = find_img_name(img_dir.replace("/gt_imgs/","/inpaint_torso_imgs/"), idx)
        if ret3 == 'None':
            continue
        ret4 = find_img_name(img_dir.replace("/gt_imgs/","/com_imgs/"), idx)
        if ret4 == 'None':
            continue
        return idx
    

def find_img_name(img_dir, idx):
    gt_img_fname = os.path.join(img_dir, format(idx, "05d") + ".jpg")
    if not os.path.exists(gt_img_fname):
        gt_img_fname = os.path.join(img_dir, str(idx) + ".jpg")
    if not os.path.exists(gt_img_fname):
        gt_img_fname = os.path.join(img_dir, format(idx, "08d") + ".jpg")
    if not os.path.exists(gt_img_fname):
        gt_img_fname = os.path.join(img_dir, format(idx, "08d") + ".png")
    if not os.path.exists(gt_img_fname):
        gt_img_fname = os.path.join(img_dir, format(idx, "05d") + ".png")
    if not os.path.exists(gt_img_fname):
        gt_img_fname = os.path.join(img_dir, str(idx) + ".png")
    if os.path.exists(gt_img_fname):
        return gt_img_fname
    else:
        return 'None'
    
    
def get_win_from_arr(arr, index, win_size):
    left = index - win_size//2
    right = index + (win_size - win_size//2)
    pad_left = 0
    pad_right = 0
    if left < 0:
        pad_left = -left
        left = 0
    if right > arr.shape[0]:
        pad_right = right - arr.shape[0]
        right = arr.shape[0]
    win = arr[left:right]
    if pad_left > 0:
        if isinstance(arr, np.ndarray):
            win = np.concatenate([np.zeros_like(win[:pad_left]), win], axis=0)
        else:
            win = torch.cat([torch.zeros_like(win[:pad_left]), win], dim=0)
    if pad_right > 0:
        if isinstance(arr, np.ndarray):
            win = np.concatenate([win, np.zeros_like(win[:pad_right])], axis=0) # [8, 16]
        else:
            win = torch.cat([win, torch.zeros_like(win[:pad_right])], dim=0) # [8, 16]
    return win


class Img2Plane_Dataset(Dataset):
    def __init__(self, prefix='train', data_dir=None):
        self.db_key = prefix
        self.ds = None
        self.sizes = None
        self.x_maxframes = 200 # 50 video frames
        self.face3d_helper = Face3DHelper('deep_3drecon/BFM')
        self.x_multiply = 8
        self.hparams = hparams
        self.pose_sampler = UnifiedCameraPoseSampler()
        self.ds_path = self.hparams['binary_data_dir'] if data_dir is None else data_dir

    def __len__(self):
        ds = self.ds = IndexedDataset(f'{self.ds_path}/{self.db_key}')
        return len(ds)

    def _get_item(self, index):
        """
        This func is necessary to open files in multi-threads!
        """
        if self.ds is None:
            self.ds = IndexedDataset(f'{self.ds_path}/{self.db_key}')
        return self.ds[index]
    
    def __getitem__(self, idx):
        raw_item = self._get_item(idx)
        if raw_item is None:
            print("loading from binary data failed!")
            return None
        item = {
            'idx': idx,
            'item_name': raw_item['img_dir'],
        }
        img_dir = raw_item['img_dir'].replace('/com_imgs/', '/gt_imgs/')
        num_frames = len(raw_item['exp'])

        hparams = self.hparams
        camera_ret = get_eg3d_convention_camera_pose_intrinsic({'euler':convert_to_tensor(raw_item['euler']).cpu(), 'trans':convert_to_tensor(raw_item['trans']).cpu()})
        c2w, intrinsics = camera_ret['c2w'], camera_ret['intrinsics']
        raw_item['c2w'] = c2w
        raw_item['intrinsics'] = intrinsics


        max_pitch = 10 / 180 * 3.1415926 # range for mv pitch angle is smaller than that of ref
        min_pitch = -max_pitch
        pitch = random.random() * (max_pitch - min_pitch) + min_pitch
        max_yaw = 16 / 180 * 3.1415926
        min_yaw = - max_yaw
        yaw = random.random() * (max_yaw - min_yaw) + min_yaw
        distance = random.random() * (3.2-2.7) + 2.7 # [2.7, 4.0]
        ws_camera = self.pose_sampler.get_camera_pose(pitch, yaw, lookat_location=torch.tensor([0,0,0.2]), distance_to_orig=distance)[0]

        if hparams.get("random_sample_pose", False) is True and random.random() < 0.5 :
            max_pitch = 26 / 180 * 3.1415926 # range for mv pitch angle is smaller than that of ref
            min_pitch = -max_pitch
            pitch = random.random() * (max_pitch - min_pitch) + min_pitch
            max_yaw = 38 / 180 * 3.1415926
            min_yaw = - max_yaw
            yaw = random.random() * (max_yaw - min_yaw) + min_yaw
            distance = random.random() * (4.0-2.7) + 2.7 # [2.7, 4.0]
            real_camera = self.pose_sampler.get_camera_pose(pitch, yaw, lookat_location=torch.tensor([0,0,0.2]), distance_to_orig=distance)[0]
        else:
            real_idx = sample_idx(img_dir, num_frames)
            real_c2w = raw_item['c2w'][real_idx]
            real_intrinsics = raw_item['intrinsics'][real_idx]
            real_camera = np.concatenate([real_c2w.reshape([16,]) , real_intrinsics.reshape([9,])], axis=0)
            real_camera = convert_to_tensor(real_camera)

        if hparams.get("random_sample_pose", False) is True and random.random() < 0.5 :
            max_pitch = 26 / 180 * 3.1415926 # range for mv pitch angle is smaller than that of ref
            min_pitch = -max_pitch
            pitch = random.random() * (max_pitch - min_pitch) + min_pitch
            max_yaw = 38 / 180 * 3.1415926
            min_yaw = - max_yaw
            yaw = random.random() * (max_yaw - min_yaw) + min_yaw
            distance = random.random() * (4.0-2.7) + 2.7 # [2.7, 4.0]
            fake_camera = self.pose_sampler.get_camera_pose(pitch, yaw, lookat_location=torch.tensor([0,0,0.2]), distance_to_orig=distance)[0]
        else:
            fake_idx = sample_idx(img_dir, num_frames)
            fake_c2w = raw_item['c2w'][fake_idx]
            fake_intrinsics = raw_item['intrinsics'][fake_idx]
            fake_camera = np.concatenate([fake_c2w.reshape([16,]), fake_intrinsics.reshape([9,])], axis=0)
            fake_camera = convert_to_tensor(fake_camera)

        item.update({
            'ws_camera': ws_camera,
            'real_camera': real_camera,
            'fake_camera': fake_camera,
            # id,exp,euler,trans, used to generate the secc map
        })

        return item
    
    def get_dataloader(self, batch_size=1, num_workers=0):
        loader = DataLoader(self, pin_memory=True,collate_fn=self.collater, batch_size=batch_size, num_workers=num_workers)
        return loader

    def collater(self, samples):
        hparams = self.hparams
        if len(samples) == 0:
            return {}
        batch = {}

        batch['ffhq_ws_cameras'] = torch.stack([s['ws_camera'] for s in samples], dim=0) # [B, 204]
        batch['ffhq_ref_cameras'] = torch.stack([s['real_camera'] for s in samples], dim=0) # [B, 204]
        batch['ffhq_mv_cameras'] = torch.stack([s['fake_camera'] for s in samples], dim=0) # [B, 204]
        return batch



class Motion2Video_Dataset(Dataset):
    def __init__(self, prefix='train', data_dir=None):
        self.db_key = prefix
        self.ds = None
        self.sizes = None
        self.x_maxframes = 200 # 50 video frames
        self.face3d_helper = Face3DHelper('deep_3drecon/BFM')
        self.x_multiply = 8
        self.hparams = hparams
        self.ds_path = self.hparams['binary_data_dir'] if data_dir is None else data_dir

    def __len__(self):
        ds = self.ds = IndexedDataset(f'{self.ds_path}/{self.db_key}')
        return len(ds)

    def _get_item(self, index):
        """
        This func is necessary to open files in multi-threads!
        """
        if self.ds is None:
            self.ds = IndexedDataset(f'{self.ds_path}/{self.db_key}')
        return self.ds[index]
    
    def __getitem__(self, idx):
        raw_item = self._get_item(idx)
        if raw_item is None:
            print("loading from binary data failed!")
            return None
        item = {
            'idx': idx,
            'item_name': raw_item['img_dir'],
        }
            
        camera_ret = get_eg3d_convention_camera_pose_intrinsic({'euler':convert_to_tensor(raw_item['euler']).cpu(), 'trans':convert_to_tensor(raw_item['trans']).cpu()})
        c2w, intrinsics = camera_ret['c2w'], camera_ret['intrinsics']
        raw_item['c2w'] = c2w
        raw_item['intrinsics'] = intrinsics

        img_dir = raw_item['img_dir'].replace('/com_imgs/', '/gt_imgs/')
        num_frames = len(raw_item['exp'])

        # src 
        real_idx = sample_idx(img_dir, num_frames)
        real_c2w = raw_item['c2w'][real_idx]
        
        real_intrinsics = raw_item['intrinsics'][real_idx]
        real_camera = np.concatenate([real_c2w.reshape([16,]) , real_intrinsics.reshape([9,])], axis=0)
        real_camera = convert_to_tensor(real_camera)
        item['real_camera'] = real_camera

        gt_img_fname = find_img_name(img_dir, real_idx)
        gt_img = load_image_as_uint8_tensor(gt_img_fname)[..., :3] # ignore alpha channel when png
        item['real_gt_img'] = gt_img.float() / 127.5 - 1
        # for key in ['head', 'torso', 'torso_with_bg', 'person']:
        for key in ['head', 'com', 'inpaint_torso']:
            key_img_dir = img_dir.replace("/gt_imgs/",f"/{key}_imgs/")
            key_img_fname = find_img_name(key_img_dir, real_idx)
            key_img = load_image_as_uint8_tensor(key_img_fname)[..., :3] # ignore alpha channel when png
            item[f'real_{key}_img'] = key_img.float() / 127.5 - 1
        bg_img_name = img_dir.replace("/gt_imgs/",f"/bg_img/") + '.jpg'
        bg_img = load_image_as_uint8_tensor(bg_img_name)[..., :3] # ignore alpha channel when png
        item[f'bg_img'] = bg_img.float() / 127.5 - 1

        seg_img_name = gt_img_fname.replace("/gt_imgs/",f"/segmaps/").replace(".jpg", ".png")
        seg_img = cv2.imread(seg_img_name)[:,:, ::-1]
        segmap = torch.from_numpy(decode_segmap_mask_from_image(seg_img)) # [6, H, W]
        item[f'real_segmap'] = segmap
        item[f'real_head_mask'] = segmap[[1,3,5]].sum(dim=0)
        item[f'real_torso_mask'] = segmap[[2,4]].sum(dim=0)
        item.update({
            # id,exp,euler,trans, used to generate the secc map
            'real_identity': convert_to_tensor(raw_item['id']).reshape([80,]),
            # 'real_identity': convert_to_tensor(raw_item['id'][real_idx]).reshape([80,]),
            'real_expression': convert_to_tensor(raw_item['exp'][real_idx]).reshape([64,]),
            'real_euler': convert_to_tensor(raw_item['euler'][real_idx]).reshape([3,]),
            'real_trans': convert_to_tensor(raw_item['trans'][real_idx]).reshape([3,]),
        })

        pertube_idx_candidates = [idx for idx in [real_idx-1,  real_idx+1] if (idx>=0 and idx <= num_frames-1 )] # previous frame
        # pertube_idx_candidates = [idx for idx in [real_idx-2,  real_idx-1,  real_idx+1,  real_idx+2] if (idx>=0 and idx <= num_frames-1 )] # previous frame
        pertube_idx = random.choice(pertube_idx_candidates)
        item[f'real_pertube_expression_1'] = convert_to_tensor(raw_item['exp'][pertube_idx]).reshape([64,])
        item[f'real_pertube_expression_2'] = item['real_expression'] * 2 - item[f'real_pertube_expression_1']

        # tgt
        fake_idx = sample_idx(img_dir, num_frames)
        min_offset = min(50, max((num_frames-1-fake_idx)//2, (fake_idx)//2))
        while abs(fake_idx - real_idx) < min_offset:
            fake_idx = sample_idx(img_dir, num_frames)
            min_offset = min(50, max((num_frames-1-fake_idx)//2, (fake_idx)//2))
        fake_c2w = raw_item['c2w'][fake_idx]

        fake_intrinsics = raw_item['intrinsics'][fake_idx]
        fake_camera = np.concatenate([fake_c2w.reshape([16,]) , fake_intrinsics.reshape([9,])], axis=0)
        fake_camera = convert_to_tensor(fake_camera)
        item['fake_camera'] = fake_camera
        
        gt_img_fname = find_img_name(img_dir, fake_idx)
        gt_img = load_image_as_uint8_tensor(gt_img_fname)[..., :3] # ignore alpha channel when png
        item['fake_gt_img'] = gt_img.float() / 127.5 - 1
        seg_img_name = gt_img_fname.replace("/gt_imgs/",f"/segmaps/").replace(".jpg", ".png")
        seg_img = cv2.imread(seg_img_name)[:,:, ::-1]
        segmap = torch.from_numpy(decode_segmap_mask_from_image(seg_img)) # [6, H, W]
        item[f'fake_segmap'] = segmap
        item[f'fake_head_mask'] = segmap[[1,3,5]].sum(dim=0)
        item[f'fake_torso_mask'] = segmap[[2,4]].sum(dim=0)
        # for key in ['head', 'torso', 'torso_with_bg', 'person']:
        for key in ['head', 'com', 'inpaint_torso']:
            key_img_dir = img_dir.replace("/gt_imgs/",f"/{key}_imgs/")
            key_img_fname = find_img_name(key_img_dir, fake_idx)
            key_img = load_image_as_uint8_tensor(key_img_fname)[..., :3] # ignore alpha channel when png
            item[f'fake_{key}_img'] = key_img.float() / 127.5 - 1

        item.update({
            # id,exp,euler,trans, used to generate the secc map
            f'fake_identity': convert_to_tensor(raw_item['id']).reshape([80,]),
            # f'fake_identity': convert_to_tensor(raw_item['id'][fake_idx]).reshape([80,]),
            f'fake_expression': convert_to_tensor(raw_item['exp'][fake_idx]).reshape([64,]),
            f'fake_euler': convert_to_tensor(raw_item['euler'][fake_idx]).reshape([3,]),
            f'fake_trans': convert_to_tensor(raw_item['trans'][fake_idx]).reshape([3,]),
        })

        # pertube_idx_candidates = [idx for idx in [fake_idx-2,  fake_idx-1,  fake_idx+1,  fake_idx+2] if (idx>=0 and idx <= num_frames-1 )] # previous frame
        pertube_idx_candidates = [idx for idx in [fake_idx-1,  fake_idx+1] if (idx>=0 and idx <= num_frames-1 )] # previous frame
        pertube_idx = random.choice(pertube_idx_candidates)
        item[f'fake_pertube_expression_1'] = convert_to_tensor(raw_item['exp'][pertube_idx]).reshape([64,])
        item[f'fake_pertube_expression_2'] = item['fake_expression'] * 2 - item[f'fake_pertube_expression_1']

        return item

    def get_dataloader(self, batch_size=1, num_workers=0):
        loader = DataLoader(self, pin_memory=True,collate_fn=self.collater, batch_size=batch_size, num_workers=num_workers)
        return loader

    def collater(self, samples):
        hparams = self.hparams
        if len(samples) == 0:
            return {}
        batch = {}

        batch['th1kh_item_names'] = [s['item_name'] for s in samples]
        batch['th1kh_ref_gt_imgs'] = torch.stack([s['real_gt_img'] for s in samples]).permute(0,3,1,2) # [B, H, W, 3]==>[B,3,H,W]
        
        batch['th1kh_ref_head_masks'] = torch.stack([s['real_head_mask'] for s in samples]) # [B,6,H,W]
        batch['th1kh_ref_torso_masks'] = torch.stack([s['real_torso_mask'] for s in samples]) # [B,6,H,W]
        batch['th1kh_ref_segmaps'] = torch.stack([s['real_segmap'] for s in samples]) # [B,6,H,W]
        # for key in ['head', 'torso', 'torso_with_bg', 'person']:
        for key in ['head', 'com', 'inpaint_torso']:
            batch[f'th1kh_ref_{key}_imgs'] = torch.stack([s[f'real_{key}_img'] for s in samples]).permute(0,3,1,2) # [B, H, W, 3]==>[B,3,H,W]
        batch[f'th1kh_bg_imgs'] = torch.stack([s[f'bg_img'] for s in samples]).permute(0,3,1,2) # [B, H, W, 3]==>[B,3,H,W]
        
        batch['th1kh_ref_cameras'] = torch.stack([s['real_camera'] for s in samples], dim=0) # [B, 204]
        batch['th1kh_ref_ids'] = torch.stack([s['real_identity'] for s in samples], dim=0) # [B, 204]
        batch['th1kh_ref_exps'] = torch.stack([s['real_expression'] for s in samples], dim=0) # [B, 204]
        batch['th1kh_ref_eulers'] = torch.stack([s['real_euler'] for s in samples], dim=0) # [B, 204]
        batch['th1kh_ref_trans'] = torch.stack([s['real_trans'] for s in samples], dim=0) # [B, 204]

        batch['th1kh_mv_gt_imgs'] = torch.stack([s['fake_gt_img'] for s in samples]).permute(0,3,1,2) # [B, H, W, 3]==>[B,3,H,W]
        # for key in ['head', 'torso', 'torso_with_bg', 'person']:
        for key in ['head', 'com', 'inpaint_torso']:
            batch[f'th1kh_mv_{key}_imgs'] = torch.stack([s[f'fake_{key}_img'] for s in samples]).permute(0,3,1,2) # [B, H, W, 3]==>[B,3,H,W]

        batch['th1kh_mv_head_masks'] = torch.stack([s['fake_head_mask'] for s in samples]) # [B,6,H,W]
        batch['th1kh_mv_torso_masks'] = torch.stack([s['fake_torso_mask'] for s in samples]) # [B,6,H,W]
        batch['th1kh_mv_cameras'] = torch.stack([s['fake_camera'] for s in samples], dim=0) # [B, 204]
        batch['th1kh_mv_ids'] = torch.stack([s['fake_identity'] for s in samples], dim=0) # [B, 204]
        batch['th1kh_mv_exps'] = torch.stack([s['fake_expression'] for s in samples], dim=0) # [B, 204]
        batch['th1kh_mv_eulers'] = torch.stack([s['fake_euler'] for s in samples], dim=0) # [B, 204]
        batch['th1kh_mv_trans'] = torch.stack([s['fake_trans'] for s in samples], dim=0) # [B, 204]

        batch['th1kh_ref_pertube_exps_1'] = torch.stack([s['real_pertube_expression_1'] for s in samples], dim=0) # [B, 204]
        batch['th1kh_ref_pertube_exps_2'] = torch.stack([s['real_pertube_expression_2'] for s in samples], dim=0) # [B, 204]
        batch['th1kh_mv_pertube_exps_1'] = torch.stack([s['fake_pertube_expression_1'] for s in samples], dim=0) # [B, 204]
        batch['th1kh_mv_pertube_exps_2'] = torch.stack([s['fake_pertube_expression_2'] for s in samples], dim=0) # [B, 204]

        return batch

if __name__ == '__main__':
    os.environ["OMP_NUM_THREADS"] = "1"

    ds = Img2Plane_Dataset("train", 'data/binary/th1kh')
    # ds = Motion2Video_Dataset("train", 'data/binary/th1kh')
    dl = ds.get_dataloader()
    for b in tqdm(dl):
        pass