File size: 8,365 Bytes
e34aada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import torch
from torch import nn
from torch.nn import functional as F
import numpy as np
import math


class Conv1d(nn.Module):
    def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.conv_block = nn.Sequential(
                            nn.Conv1d(cin, cout, kernel_size, stride, padding),
                            nn.BatchNorm1d(cout)
                            )
        self.act = nn.ReLU()
        self.residual = residual

    def forward(self, x):
        out = self.conv_block(x)
        if self.residual:
            out += x
        return self.act(out)

class LossScale(nn.Module):
    def __init__(self, init_w=10.0, init_b=-5.0):
        super(LossScale, self).__init__()
        
        self.wC = nn.Parameter(torch.tensor(init_w))
        self.bC = nn.Parameter(torch.tensor(init_b))

class CLIPLoss(nn.Module):
    def __init__(self,):
        super().__init__()

    def forward(self, audio_features, motion_features, logit_scale, clip_mask=None):
        logits_per_audio = logit_scale * audio_features @ motion_features.T # [b,c]
        logits_per_motion = logit_scale * motion_features @ audio_features.T # [b,c]
        if clip_mask is not None:
            logits_per_audio += clip_mask        
            logits_per_motion += clip_mask
        labels = torch.arange(logits_per_motion.shape[0]).to(logits_per_motion.device)
        motion_loss = F.cross_entropy(logits_per_motion, labels)
        audio_loss = F.cross_entropy(logits_per_audio, labels)
        clip_loss = (motion_loss + audio_loss) / 2
        ret = {
            "audio_loss": audio_loss,
            "motion_loss": motion_loss,
            "clip_loss": clip_loss
        }
        return ret
        
    def compute_sync_conf(self, audio_features, motion_features, return_matrix=False):
        logits_per_audio = audio_features @ motion_features.T # [b,c]
        if return_matrix:
            return logits_per_audio
        return logits_per_audio[range(len(audio_features)), range(len(audio_features))]

class LandmarkHubertSyncNet(nn.Module):
    def __init__(self, lm_dim=60, audio_dim=1024, num_layers_per_block=3, base_hid_size=128, out_dim=512):
        super(LandmarkHubertSyncNet, self).__init__()

        self.clip_loss_fn = CLIPLoss()
        self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) * 0
        self.logit_scale_2 = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) * 0
        self.logit_scale_max = math.log(1. / 0.01)

        # hubert = torch.rand(B, 1024, t=10)
        hubert_layers = [
            Conv1d(audio_dim, base_hid_size, kernel_size=3, stride=1, padding=1)
        ]

        hubert_layers.append(
            Conv1d(base_hid_size, base_hid_size, kernel_size=3, stride=1, padding=1),
        )
        hubert_layers += [
            Conv1d(base_hid_size, base_hid_size, kernel_size=3, stride=1, padding=1, residual=True) for _ in range(num_layers_per_block-1)
        ]

        hubert_layers.append(
            Conv1d(base_hid_size, 2*base_hid_size, kernel_size=3, stride=2, padding=1),
        )
        hubert_layers += [
            Conv1d(2*base_hid_size, 2*base_hid_size, kernel_size=3, stride=1, padding=1, residual=True) for _ in range(num_layers_per_block-1)
        ]

        hubert_layers.append(
            Conv1d(2*base_hid_size, 4*base_hid_size, kernel_size=3, stride=2, padding=1),
        )
        hubert_layers += [
            Conv1d(4*base_hid_size, 4*base_hid_size, kernel_size=3, stride=1, padding=1, residual=True) for _ in range(num_layers_per_block-1)
        ]

        hubert_layers += [
            Conv1d(4*base_hid_size, 4*base_hid_size, kernel_size=3, stride=1, padding=1),
            Conv1d(4*base_hid_size, 4*base_hid_size, kernel_size=3, stride=1, padding=0),
            Conv1d(4*base_hid_size, 4*base_hid_size, kernel_size=1, stride=1, padding=0),
            Conv1d(4*base_hid_size, out_dim, kernel_size=1, stride=1, padding=0),
        ]
        self.hubert_encoder = nn.Sequential(*hubert_layers)

        # mouth = torch.rand(B, 20*3, t=5)
        mouth_layers = [
            Conv1d(lm_dim, 96, kernel_size=3, stride=1, padding=1)
        ]

        mouth_layers.append(
            Conv1d(96, base_hid_size, kernel_size=3, stride=1, padding=1),
        )
        mouth_layers += [
            Conv1d(base_hid_size, base_hid_size, kernel_size=3, stride=1, padding=1, residual=True) for _ in range(num_layers_per_block-1)
        ]

        mouth_layers.append(
            Conv1d(base_hid_size, 2*base_hid_size, kernel_size=3, stride=2, padding=1),
        )
        mouth_layers += [
            Conv1d(2*base_hid_size, 2*base_hid_size, kernel_size=3, stride=1, padding=1, residual=True) for _ in range(num_layers_per_block-1)
        ]

        mouth_layers.append(
            Conv1d(2*base_hid_size, 4*base_hid_size, kernel_size=3, stride=1, padding=1),
        )
        mouth_layers += [
            Conv1d(4*base_hid_size, 4*base_hid_size, kernel_size=3, stride=1, padding=1, residual=True) for _ in range(num_layers_per_block-1)
        ]

        mouth_layers += [
            Conv1d(4*base_hid_size, 4*base_hid_size, kernel_size=3, stride=1, padding=1),
            Conv1d(4*base_hid_size, 4*base_hid_size, kernel_size=3, stride=1, padding=0),
            Conv1d(4*base_hid_size, 4*base_hid_size, kernel_size=1, stride=1, padding=0),
            Conv1d(4*base_hid_size, out_dim, kernel_size=1, stride=1, padding=0),
        ]
        self.mouth_encoder = nn.Sequential(*mouth_layers)

        self.lm_dim = lm_dim
        self.audio_dim = audio_dim
        self.logloss = nn.BCELoss()

    def forward(self, hubert, mouth_lm): 
        # hubert := (B, T=10, C=1024)
        # mouth_lm3d := (B, T=5, C=60)
        hubert = hubert.transpose(1,2)
        mouth_lm = mouth_lm.transpose(1,2)
        mouth_embedding = self.mouth_encoder(mouth_lm)
        audio_embedding = self.hubert_encoder(hubert)
        audio_embedding = audio_embedding.view(audio_embedding.size(0), -1)
        mouth_embedding = mouth_embedding.view(mouth_embedding.size(0), -1)
        audio_embedding = F.normalize(audio_embedding, p=2, dim=1)
        mouth_embedding = F.normalize(mouth_embedding, p=2, dim=1)
        return audio_embedding, mouth_embedding

    def cal_sync_loss(self, audio_embedding, mouth_embedding, label, reduction='none'):
        if isinstance(label, torch.Tensor): # finegrained label
            gt_d = label.float().view(-1).to(audio_embedding.device)
        else: # int to represent global label, 1 denotes positive, and 0 denotes negative, used when calculate sync loss for other models
            gt_d = (torch.ones([audio_embedding.shape[0]]) * label).float().to(audio_embedding.device) # int
        d = F.cosine_similarity(audio_embedding, mouth_embedding) # [B]
        loss = F.binary_cross_entropy(d.reshape([audio_embedding.shape[0],]), gt_d, reduction=reduction)
        return loss, d

    def cal_clip_loss(self, audio_embedding, mouth_embedding, clip_mask=None):
        # logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp()
        logit_scale = 1
        clip_ret = self.clip_loss_fn(audio_embedding, mouth_embedding, logit_scale, clip_mask=clip_mask)
        loss = clip_ret['clip_loss']
        return loss

    def cal_clip_loss_local(self, audio_embedding, mouth_embedding, clip_mask=None):
        # logit_scale = torch.clamp(self.logit_scale_2, max=self.logit_scale_max).exp()
        logit_scale = 1
        clip_ret = self.clip_loss_fn(audio_embedding, mouth_embedding, logit_scale, clip_mask=clip_mask)
        loss = clip_ret['clip_loss']
        return loss

    def compute_sync_conf(self, audio_embedding, mouth_embedding, return_matrix=False):
        # logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp()
        logit_scale = 1
        clip_ret = self.clip_loss_fn.compute_sync_conf(audio_embedding, mouth_embedding, return_matrix)
        return clip_ret

if __name__ == '__main__':
    syncnet = LandmarkHubertSyncNet(lm_dim=204)
    hubert = torch.rand(2, 10, 1024)
    lm = torch.rand(2, 5, 204)
    mel_embedding, exp_embedding = syncnet(hubert, lm)
    label = torch.tensor([1., 0.])
    loss = syncnet.cal_sync_loss(mel_embedding, exp_embedding, label)
    print(" ")