File size: 21,233 Bytes
e34aada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
import math
import torch
from torch import nn
from torch.nn import functional as F
import torch.distributions as dist
import numpy as np
import copy
from modules.audio2motion.flow_base import Glow, WN, ResidualCouplingBlock
from modules.audio2motion.transformer_base import Embedding

from utils.commons.pitch_utils import f0_to_coarse
from utils.commons.hparams import hparams


class LambdaLayer(nn.Module):
    def __init__(self, lambd):
        super(LambdaLayer, self).__init__()
        self.lambd = lambd

    def forward(self, x):
        return self.lambd(x)


def make_positions(tensor, padding_idx):
    """Replace non-padding symbols with their position numbers.

    Position numbers begin at padding_idx+1. Padding symbols are ignored.
    """
    # The series of casts and type-conversions here are carefully
    # balanced to both work with ONNX export and XLA. In particular XLA
    # prefers ints, cumsum defaults to output longs, and ONNX doesn't know
    # how to handle the dtype kwarg in cumsum.
    mask = tensor.ne(padding_idx).int()
    return (
                   torch.cumsum(mask, dim=1).type_as(mask) * mask
           ).long() + padding_idx

class SinusoidalPositionalEmbedding(nn.Module):
    """This module produces sinusoidal positional embeddings of any length.

    Padding symbols are ignored.
    """

    def __init__(self, embedding_dim, padding_idx, init_size=1024):
        super().__init__()
        self.embedding_dim = embedding_dim
        self.padding_idx = padding_idx
        self.weights = SinusoidalPositionalEmbedding.get_embedding(
            init_size,
            embedding_dim,
            padding_idx,
        )
        self.register_buffer('_float_tensor', torch.FloatTensor(1))

    @staticmethod
    def get_embedding(num_embeddings, embedding_dim, padding_idx=None):
        """Build sinusoidal embeddings.

        This matches the implementation in tensor2tensor, but differs slightly
        from the description in Section 3.5 of "Attention Is All You Need".
        """
        half_dim = embedding_dim // 2
        emb = math.log(10000) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb)
        emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0)
        emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
        if embedding_dim % 2 == 1:
            # zero pad
            emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
        if padding_idx is not None:
            emb[padding_idx, :] = 0
        return emb

    def forward(self, input, incremental_state=None, timestep=None, positions=None, **kwargs):
        """Input is expected to be of size [bsz x seqlen]."""
        bsz, seq_len = input.shape[:2]
        max_pos = self.padding_idx + 1 + seq_len
        if self.weights is None or max_pos > self.weights.size(0):
            # recompute/expand embeddings if needed
            self.weights = SinusoidalPositionalEmbedding.get_embedding(
                max_pos,
                self.embedding_dim,
                self.padding_idx,
            )
        self.weights = self.weights.to(self._float_tensor)

        if incremental_state is not None:
            # positions is the same for every token when decoding a single step
            pos = timestep.view(-1)[0] + 1 if timestep is not None else seq_len
            return self.weights[self.padding_idx + pos, :].expand(bsz, 1, -1)

        positions = make_positions(input, self.padding_idx) if positions is None else positions
        return self.weights.index_select(0, positions.view(-1)).view(bsz, seq_len, -1).detach()

    def max_positions(self):
        """Maximum number of supported positions."""
        return int(1e4)  # an arbitrary large number

class FVAEEncoder(nn.Module):
    def __init__(self, in_channels, hidden_channels, latent_channels, kernel_size,
                 n_layers, gin_channels=0, p_dropout=0, strides=[4]):
        super().__init__()
        self.strides = strides
        self.hidden_size = hidden_channels
        self.pre_net = nn.Sequential(*[
            nn.Conv1d(in_channels, hidden_channels, kernel_size=s * 2, stride=s, padding=s // 2)
            if i == 0 else
            nn.Conv1d(hidden_channels, hidden_channels, kernel_size=s * 2, stride=s, padding=s // 2)
            for i, s in enumerate(strides)
        ])
        self.wn = WN(hidden_channels, kernel_size, 1, n_layers, gin_channels, p_dropout)
        self.out_proj = nn.Conv1d(hidden_channels, latent_channels * 2, 1)

        self.latent_channels = latent_channels

    def forward(self, x, x_mask, g):
        x = self.pre_net(x)
        x_mask = x_mask[:, :, ::np.prod(self.strides)][:, :, :x.shape[-1]]
        x = x * x_mask
        x = self.wn(x, x_mask, g) * x_mask
        x = self.out_proj(x)
        m, logs = torch.split(x, self.latent_channels, dim=1)
        z = (m + torch.randn_like(m) * torch.exp(logs))
        return z, m, logs, x_mask


class FVAEDecoder(nn.Module):
    def __init__(self, latent_channels, hidden_channels, out_channels, kernel_size,
                 n_layers, gin_channels=0, p_dropout=0,
                 strides=[4]):
        super().__init__()
        self.strides = strides
        self.hidden_size = hidden_channels
        self.pre_net = nn.Sequential(*[
            nn.ConvTranspose1d(latent_channels, hidden_channels, kernel_size=s, stride=s)
            if i == 0 else
            nn.ConvTranspose1d(hidden_channels, hidden_channels, kernel_size=s, stride=s)
            for i, s in enumerate(strides)
        ])
        self.wn = WN(hidden_channels, kernel_size, 1, n_layers, gin_channels, p_dropout)
        self.out_proj = nn.Conv1d(hidden_channels, out_channels, 1)

    def forward(self, x, x_mask, g):
        x = self.pre_net(x)
        x = x * x_mask
        x = self.wn(x, x_mask, g) * x_mask
        x = self.out_proj(x)
        return x

class FVAE(nn.Module):
    def __init__(self,
                 in_out_channels=64, hidden_channels=256, latent_size=16,
                 kernel_size=3, enc_n_layers=5, dec_n_layers=5, gin_channels=80, strides=[4,],
                 use_prior_glow=True, glow_hidden=256, glow_kernel_size=3, glow_n_blocks=5,
                 sqz_prior=False, use_pos_emb=False):
        super(FVAE, self).__init__()
        self.in_out_channels = in_out_channels
        self.strides = strides
        self.hidden_size = hidden_channels
        self.latent_size = latent_size
        self.use_prior_glow = use_prior_glow
        self.sqz_prior = sqz_prior
        self.g_pre_net = nn.Sequential(*[
            nn.Conv1d(gin_channels, gin_channels, kernel_size=s * 2, stride=s, padding=s // 2)
            for i, s in enumerate(strides)
        ])
        self.encoder = FVAEEncoder(in_out_channels, hidden_channels, latent_size, kernel_size,
                                   enc_n_layers, gin_channels, strides=strides)
        if use_prior_glow:
            self.prior_flow = ResidualCouplingBlock(
                latent_size, glow_hidden, glow_kernel_size, 1, glow_n_blocks, 4, gin_channels=gin_channels)
        self.use_pos_embed = use_pos_emb
        if sqz_prior:
            self.query_proj = nn.Linear(latent_size, latent_size)
            self.key_proj = nn.Linear(latent_size, latent_size)
            self.value_proj = nn.Linear(latent_size, hidden_channels)
            if self.in_out_channels in [7, 64]:
                self.decoder = FVAEDecoder(hidden_channels, hidden_channels, in_out_channels, kernel_size,
                                    dec_n_layers, gin_channels, strides=strides)
            elif self.in_out_channels == 71:
                self.exp_decoder = FVAEDecoder(hidden_channels, hidden_channels, 64, kernel_size,
                                    dec_n_layers, gin_channels, strides=strides)
                self.pose_decoder = FVAEDecoder(hidden_channels, hidden_channels, 7, kernel_size,
                                    dec_n_layers, gin_channels, strides=strides)
            if self.use_pos_embed:
                self.embed_positions = SinusoidalPositionalEmbedding(self.latent_size, 0,init_size=2000+1,)
        else:
            self.decoder = FVAEDecoder(latent_size, hidden_channels, in_out_channels, kernel_size,
                                    dec_n_layers, gin_channels, strides=strides)

        self.prior_dist = dist.Normal(0, 1)

    def forward(self, x=None, x_mask=None, g=None, infer=False, temperature=1. , **kwargs):
        """

        :param x: [B, T,  C_in_out]
        :param x_mask: [B, T]
        :param g: [B, T, C_g]
        :return:
        """
        x_mask = x_mask[:, None, :] # [B, 1, T]
        g = g.transpose(1,2) # [B, C_g, T]
        g_for_sqz = g

        g_sqz = self.g_pre_net(g_for_sqz)

        if not infer:
            x = x.transpose(1,2) # [B, C, T]
            z_q, m_q, logs_q, x_mask_sqz = self.encoder(x, x_mask, g_sqz)
            if self.sqz_prior:
                z = z_q
                if self.use_pos_embed:
                    position = self.embed_positions(z.transpose(1,2).abs().sum(-1)).transpose(1,2)
                    z = z + position
                q = self.query_proj(z.mean(dim=-1,keepdim=True).transpose(1,2)) # [B, 1, C=16]
                k = self.key_proj(z.transpose(1,2)) # [B, T, C=16]
                v = self.value_proj(z.transpose(1,2)) # [B, T, C=256]
                attn = torch.bmm(q,k.transpose(1,2)) # [B, 1, T]
                attn = F.softmax(attn, dim=-1)
                out = torch.bmm(attn, v) # [B, 1, C=256]
                style_encoding = out.repeat([1,z_q.shape[-1],1]).transpose(1,2) # [B, C=256, T]
                if self.in_out_channels == 71:
                    x_recon = torch.cat([self.exp_decoder(style_encoding, x_mask, g), self.pose_decoder(style_encoding, x_mask, g)], dim=1)
                else:
                    x_recon = self.decoder(style_encoding, x_mask, g)
            else:
                if self.in_out_channels == 71:
                    x_recon = torch.cat([self.exp_decoder(z_q, x_mask, g), self.pose_decoder(z_q, x_mask, g)], dim=1)
                else:
                    x_recon = self.decoder(z_q, x_mask, g)
            q_dist = dist.Normal(m_q, logs_q.exp())
            if self.use_prior_glow:
                logqx = q_dist.log_prob(z_q)
                z_p = self.prior_flow(z_q, x_mask_sqz, g_sqz)
                logpx = self.prior_dist.log_prob(z_p)
                loss_kl = ((logqx - logpx) * x_mask_sqz).sum() / x_mask_sqz.sum() / logqx.shape[1]
            else:
                loss_kl = torch.distributions.kl_divergence(q_dist, self.prior_dist)
                loss_kl = (loss_kl * x_mask_sqz).sum() / x_mask_sqz.sum() / z_q.shape[1]
                z_p = z_q
            return x_recon.transpose(1,2), loss_kl, z_p.transpose(1,2), m_q.transpose(1,2), logs_q.transpose(1,2)
        else:
            latent_shape = [g_sqz.shape[0], self.latent_size, g_sqz.shape[2]]
            z_p = self.prior_dist.sample(latent_shape).to(g.device) * temperature # [B, latent_size, T_sqz]
            if self.use_prior_glow:
                z_p = self.prior_flow(z_p, 1, g_sqz, reverse=True)
            if self.sqz_prior:
                z = z_p
                if self.use_pos_embed:
                    position = self.embed_positions(z.abs().sum(-1))
                    z += position
                q = self.query_proj(z.mean(dim=-1,keepdim=True).transpose(1,2)) # [B, 1, C=16]
                k = self.key_proj(z.transpose(1,2)) # [B, T, C=16]
                v = self.value_proj(z.transpose(1,2)) # [B, T, C=256]
                attn = torch.bmm(q,k.transpose(1,2)) # [B, 1, T]
                attn = F.softmax(attn, dim=-1)
                out = torch.bmm(attn, v) # [B, 1, C=256]
                style_encoding = out.repeat([1,z_p.shape[-1],1]).transpose(1,2) # [B, C=256, T]
                x_recon = self.decoder(style_encoding, 1, g)
                if self.in_out_channels == 71:
                    x_recon = torch.cat([self.exp_decoder(style_encoding, 1, g), self.pose_decoder(style_encoding, 1, g)], dim=1)
                else:
                    x_recon = self.decoder(style_encoding, 1, g)
            else:
                if self.in_out_channels == 71:
                    x_recon = torch.cat([self.exp_decoder(z_p, 1, g), self.pose_decoder(z_p, 1, g)], dim=1)
                else:
                    x_recon = self.decoder(z_p, 1, g)
            return x_recon.transpose(1,2), z_p.transpose(1,2)


class VAEModel(nn.Module):
    def __init__(self, in_out_dim=64, audio_in_dim=1024, sqz_prior=False, cond_drop=False, use_prior_flow=True):
        super().__init__()
        feat_dim = 64
        self.blink_embed = nn.Embedding(2, feat_dim)
        self.audio_in_dim = audio_in_dim
        cond_dim = feat_dim
        self.mel_encoder = nn.Sequential(*[
                nn.Conv1d(audio_in_dim, 64, 3, 1, 1, bias=False),
                nn.BatchNorm1d(64),
                nn.GELU(),
                nn.Conv1d(64, feat_dim, 3, 1, 1, bias=False)
            ]) 
        self.cond_drop = cond_drop
        if self.cond_drop:
            self.dropout = nn.Dropout(0.5)

        self.in_dim, self.out_dim = in_out_dim, in_out_dim
        self.sqz_prior = sqz_prior
        self.use_prior_flow = use_prior_flow
        self.vae = FVAE(in_out_channels=in_out_dim, hidden_channels=256, latent_size=16, kernel_size=5,
            enc_n_layers=8, dec_n_layers=4, gin_channels=cond_dim, strides=[4,],
            use_prior_glow=self.use_prior_flow, glow_hidden=64, glow_kernel_size=3, glow_n_blocks=4,sqz_prior=sqz_prior)
        self.downsampler = LambdaLayer(lambda x: F.interpolate(x.transpose(1,2), scale_factor=0.5, mode='linear').transpose(1,2))
        # self.downsampler = LambdaLayer(lambda x: F.interpolate(x.transpose(1,2), scale_factor=0.5, mode='nearest').transpose(1,2))

    def num_params(self, model, print_out=True, model_name="model"):
        parameters = filter(lambda p: p.requires_grad, model.parameters())
        parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
        if print_out:
            print(f'| {model_name} Trainable Parameters: %.3fM' % parameters)
        return parameters
    
    @property
    def device(self):
        return self.vae.parameters().__next__().device

    def forward(self, batch, ret, train=True, return_latent=False, temperature=1.):
        infer = not train
        mask = batch['y_mask'].to(self.device)
        mel = batch['audio'].to(self.device)
        mel = self.downsampler(mel)
        cond_feat = self.mel_encoder(mel.transpose(1,2)).transpose(1,2)

        if self.cond_drop:
            cond_feat = self.dropout(cond_feat)
        
        if not infer:
            exp = batch['y'].to(self.device)
            x = exp
            x_recon, loss_kl, z_p, m_q, logs_q = self.vae(x=x, x_mask=mask, g=cond_feat, infer=False)
            x_recon = x_recon * mask.unsqueeze(-1)
            ret['pred'] = x_recon
            ret['mask'] = mask
            ret['loss_kl'] = loss_kl
            if return_latent:
                ret['m_q'] = m_q
                ret['z_p'] = z_p
            return x_recon, loss_kl, m_q, logs_q
        else:
            x_recon, z_p = self.vae(x=None, x_mask=mask, g=cond_feat, infer=True, temperature=temperature)
            x_recon = x_recon * mask.unsqueeze(-1)
            ret['pred'] = x_recon
            ret['mask'] = mask

            return x_recon


class PitchContourVAEModel(nn.Module):
    def __init__(self, hparams, in_out_dim=64, audio_in_dim=1024, sqz_prior=False, cond_drop=False, use_prior_flow=True):
        super().__init__()
        self.hparams = copy.deepcopy(hparams)
        feat_dim = 128
        self.audio_in_dim = audio_in_dim
        self.blink_embed = nn.Embedding(2, feat_dim)
        
        self.mel_encoder = nn.Sequential(*[
                nn.Conv1d(audio_in_dim, feat_dim, 3, 1, 1, bias=False),
                nn.BatchNorm1d(feat_dim ),
                nn.GELU(),
                nn.Conv1d(feat_dim , feat_dim, 3, 1, 1, bias=False)
            ])
        
        self.pitch_embed = Embedding(300, feat_dim, None)
        self.pitch_encoder = nn.Sequential(*[
                nn.Conv1d(feat_dim, feat_dim , 3, 1, 1, bias=False),
                nn.BatchNorm1d(feat_dim),
                nn.GELU(),
                nn.Conv1d(feat_dim, feat_dim, 3, 1, 1, bias=False)
            ])

        cond_dim = feat_dim + feat_dim + feat_dim

        if hparams.get('use_mouth_amp_embed', False):
            self.mouth_amp_embed = nn.Parameter(torch.randn(feat_dim))
            cond_dim += feat_dim

        if hparams.get('use_eye_amp_embed', False):
            self.eye_amp_embed = nn.Parameter(torch.randn(feat_dim))
            cond_dim += feat_dim

        self.cond_proj = nn.Linear(cond_dim, feat_dim, bias=True)

        self.cond_drop = cond_drop
        if self.cond_drop:
            self.dropout = nn.Dropout(0.5)

        self.in_dim, self.out_dim = in_out_dim, in_out_dim
        self.sqz_prior = sqz_prior
        self.use_prior_flow = use_prior_flow
        self.vae = FVAE(in_out_channels=in_out_dim, hidden_channels=256, latent_size=16, kernel_size=5,
            enc_n_layers=8, dec_n_layers=4, gin_channels=feat_dim, strides=[4,],
            use_prior_glow=self.use_prior_flow, glow_hidden=64, glow_kernel_size=3, glow_n_blocks=4,sqz_prior=sqz_prior)
        self.downsampler = LambdaLayer(lambda x: F.interpolate(x.transpose(1,2), scale_factor=0.5, mode='nearest').transpose(1,2))

    def num_params(self, model, print_out=True, model_name="model"):
        parameters = filter(lambda p: p.requires_grad, model.parameters())
        parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
        if print_out:
            print(f'| {model_name} Trainable Parameters: %.3fM' % parameters)
        return parameters
    
    @property
    def device(self):
        return self.vae.parameters().__next__().device

    def forward(self, batch, ret, train=True, return_latent=False, temperature=1.):
        infer = not train
        hparams = self.hparams
        mask = batch['y_mask'].to(self.device)
        mel = batch['audio'].to(self.device)
        f0 = batch['f0'].to(self.device) # [b,t]
        if 'blink' not in batch:
            batch['blink'] = torch.zeros([f0.shape[0], f0.shape[1], 1], dtype=torch.long, device=f0.device)
        blink = batch['blink'].to(self.device)
        blink_feat = self.blink_embed(blink.squeeze(2))

        blink_feat  = self.downsampler(blink_feat)
        mel = self.downsampler(mel)
        f0 = self.downsampler(f0.unsqueeze(-1)).squeeze(-1)
        f0_coarse = f0_to_coarse(f0)
        pitch_emb = self.pitch_embed(f0_coarse)
        cond_feat = self.mel_encoder(mel.transpose(1,2)).transpose(1,2)
        pitch_feat = self.pitch_encoder(pitch_emb.transpose(1,2)).transpose(1,2)

        cond_feats = [cond_feat, pitch_feat, blink_feat]
        if hparams.get('use_mouth_amp_embed', False):
            mouth_amp = batch.get('mouth_amp', torch.ones([f0.shape[0], 1], device=f0.device) * 0.4)
            mouth_amp_feat = mouth_amp.unsqueeze(1) * self.mouth_amp_embed.unsqueeze(0)
            mouth_amp_feat = mouth_amp_feat.repeat([1,cond_feat.shape[1],1])
            cond_feats.append(mouth_amp_feat)

        if hparams.get('use_eye_amp_embed', False):
            eye_amp = batch.get('eye_amp', torch.ones([f0.shape[0], 1], device=f0.device) * 0.4)
            eye_amp_feat = eye_amp.unsqueeze(1) * self.eye_amp_embed.unsqueeze(0)
            eye_amp_feat = eye_amp_feat.repeat([1,cond_feat.shape[1],1])
            cond_feats.append(eye_amp_feat)

        cond_feat = torch.cat(cond_feats, dim=-1)
        cond_feat = self.cond_proj(cond_feat)

        if self.cond_drop:
            cond_feat = self.dropout(cond_feat)
        
        if not infer:
            exp = batch['y'].to(self.device)
            x = exp
            x_recon, loss_kl, z_p, m_q, logs_q = self.vae(x=x, x_mask=mask, g=cond_feat, infer=False)
            x_recon = x_recon * mask.unsqueeze(-1)
            ret['pred'] = x_recon
            ret['mask'] = mask
            ret['loss_kl'] = loss_kl
            if return_latent:
                ret['m_q'] = m_q
                ret['z_p'] = z_p
            return x_recon, loss_kl, m_q, logs_q
        else:
            x_recon, z_p = self.vae(x=None, x_mask=mask, g=cond_feat, infer=True, temperature=temperature)
            x_recon = x_recon * mask.unsqueeze(-1)
            ret['pred'] = x_recon
            ret['mask'] = mask

            return x_recon


if __name__ == '__main__':
    model = FVAE(in_out_channels=64, hidden_channels=128, latent_size=32,kernel_size=3, enc_n_layers=6, dec_n_layers=2, 
        gin_channels=80, strides=[4], use_prior_glow=False, glow_hidden=128, glow_kernel_size=3, glow_n_blocks=3)
    x = torch.rand([8, 64, 1000])
    x_mask = torch.ones([8,1,1000])
    g = torch.rand([8, 80, 1000])
    train_out = model(x,x_mask,g,infer=False)
    x_recon, loss_kl, z_p, m_q, logs_q = train_out
    print(" ")
    infer_out = model(x,x_mask,g,infer=True)
    x_recon, z_p = infer_out
    print(" ")