File size: 21,233 Bytes
e34aada |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
import math
import torch
from torch import nn
from torch.nn import functional as F
import torch.distributions as dist
import numpy as np
import copy
from modules.audio2motion.flow_base import Glow, WN, ResidualCouplingBlock
from modules.audio2motion.transformer_base import Embedding
from utils.commons.pitch_utils import f0_to_coarse
from utils.commons.hparams import hparams
class LambdaLayer(nn.Module):
def __init__(self, lambd):
super(LambdaLayer, self).__init__()
self.lambd = lambd
def forward(self, x):
return self.lambd(x)
def make_positions(tensor, padding_idx):
"""Replace non-padding symbols with their position numbers.
Position numbers begin at padding_idx+1. Padding symbols are ignored.
"""
# The series of casts and type-conversions here are carefully
# balanced to both work with ONNX export and XLA. In particular XLA
# prefers ints, cumsum defaults to output longs, and ONNX doesn't know
# how to handle the dtype kwarg in cumsum.
mask = tensor.ne(padding_idx).int()
return (
torch.cumsum(mask, dim=1).type_as(mask) * mask
).long() + padding_idx
class SinusoidalPositionalEmbedding(nn.Module):
"""This module produces sinusoidal positional embeddings of any length.
Padding symbols are ignored.
"""
def __init__(self, embedding_dim, padding_idx, init_size=1024):
super().__init__()
self.embedding_dim = embedding_dim
self.padding_idx = padding_idx
self.weights = SinusoidalPositionalEmbedding.get_embedding(
init_size,
embedding_dim,
padding_idx,
)
self.register_buffer('_float_tensor', torch.FloatTensor(1))
@staticmethod
def get_embedding(num_embeddings, embedding_dim, padding_idx=None):
"""Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly
from the description in Section 3.5 of "Attention Is All You Need".
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb)
emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
if embedding_dim % 2 == 1:
# zero pad
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
if padding_idx is not None:
emb[padding_idx, :] = 0
return emb
def forward(self, input, incremental_state=None, timestep=None, positions=None, **kwargs):
"""Input is expected to be of size [bsz x seqlen]."""
bsz, seq_len = input.shape[:2]
max_pos = self.padding_idx + 1 + seq_len
if self.weights is None or max_pos > self.weights.size(0):
# recompute/expand embeddings if needed
self.weights = SinusoidalPositionalEmbedding.get_embedding(
max_pos,
self.embedding_dim,
self.padding_idx,
)
self.weights = self.weights.to(self._float_tensor)
if incremental_state is not None:
# positions is the same for every token when decoding a single step
pos = timestep.view(-1)[0] + 1 if timestep is not None else seq_len
return self.weights[self.padding_idx + pos, :].expand(bsz, 1, -1)
positions = make_positions(input, self.padding_idx) if positions is None else positions
return self.weights.index_select(0, positions.view(-1)).view(bsz, seq_len, -1).detach()
def max_positions(self):
"""Maximum number of supported positions."""
return int(1e4) # an arbitrary large number
class FVAEEncoder(nn.Module):
def __init__(self, in_channels, hidden_channels, latent_channels, kernel_size,
n_layers, gin_channels=0, p_dropout=0, strides=[4]):
super().__init__()
self.strides = strides
self.hidden_size = hidden_channels
self.pre_net = nn.Sequential(*[
nn.Conv1d(in_channels, hidden_channels, kernel_size=s * 2, stride=s, padding=s // 2)
if i == 0 else
nn.Conv1d(hidden_channels, hidden_channels, kernel_size=s * 2, stride=s, padding=s // 2)
for i, s in enumerate(strides)
])
self.wn = WN(hidden_channels, kernel_size, 1, n_layers, gin_channels, p_dropout)
self.out_proj = nn.Conv1d(hidden_channels, latent_channels * 2, 1)
self.latent_channels = latent_channels
def forward(self, x, x_mask, g):
x = self.pre_net(x)
x_mask = x_mask[:, :, ::np.prod(self.strides)][:, :, :x.shape[-1]]
x = x * x_mask
x = self.wn(x, x_mask, g) * x_mask
x = self.out_proj(x)
m, logs = torch.split(x, self.latent_channels, dim=1)
z = (m + torch.randn_like(m) * torch.exp(logs))
return z, m, logs, x_mask
class FVAEDecoder(nn.Module):
def __init__(self, latent_channels, hidden_channels, out_channels, kernel_size,
n_layers, gin_channels=0, p_dropout=0,
strides=[4]):
super().__init__()
self.strides = strides
self.hidden_size = hidden_channels
self.pre_net = nn.Sequential(*[
nn.ConvTranspose1d(latent_channels, hidden_channels, kernel_size=s, stride=s)
if i == 0 else
nn.ConvTranspose1d(hidden_channels, hidden_channels, kernel_size=s, stride=s)
for i, s in enumerate(strides)
])
self.wn = WN(hidden_channels, kernel_size, 1, n_layers, gin_channels, p_dropout)
self.out_proj = nn.Conv1d(hidden_channels, out_channels, 1)
def forward(self, x, x_mask, g):
x = self.pre_net(x)
x = x * x_mask
x = self.wn(x, x_mask, g) * x_mask
x = self.out_proj(x)
return x
class FVAE(nn.Module):
def __init__(self,
in_out_channels=64, hidden_channels=256, latent_size=16,
kernel_size=3, enc_n_layers=5, dec_n_layers=5, gin_channels=80, strides=[4,],
use_prior_glow=True, glow_hidden=256, glow_kernel_size=3, glow_n_blocks=5,
sqz_prior=False, use_pos_emb=False):
super(FVAE, self).__init__()
self.in_out_channels = in_out_channels
self.strides = strides
self.hidden_size = hidden_channels
self.latent_size = latent_size
self.use_prior_glow = use_prior_glow
self.sqz_prior = sqz_prior
self.g_pre_net = nn.Sequential(*[
nn.Conv1d(gin_channels, gin_channels, kernel_size=s * 2, stride=s, padding=s // 2)
for i, s in enumerate(strides)
])
self.encoder = FVAEEncoder(in_out_channels, hidden_channels, latent_size, kernel_size,
enc_n_layers, gin_channels, strides=strides)
if use_prior_glow:
self.prior_flow = ResidualCouplingBlock(
latent_size, glow_hidden, glow_kernel_size, 1, glow_n_blocks, 4, gin_channels=gin_channels)
self.use_pos_embed = use_pos_emb
if sqz_prior:
self.query_proj = nn.Linear(latent_size, latent_size)
self.key_proj = nn.Linear(latent_size, latent_size)
self.value_proj = nn.Linear(latent_size, hidden_channels)
if self.in_out_channels in [7, 64]:
self.decoder = FVAEDecoder(hidden_channels, hidden_channels, in_out_channels, kernel_size,
dec_n_layers, gin_channels, strides=strides)
elif self.in_out_channels == 71:
self.exp_decoder = FVAEDecoder(hidden_channels, hidden_channels, 64, kernel_size,
dec_n_layers, gin_channels, strides=strides)
self.pose_decoder = FVAEDecoder(hidden_channels, hidden_channels, 7, kernel_size,
dec_n_layers, gin_channels, strides=strides)
if self.use_pos_embed:
self.embed_positions = SinusoidalPositionalEmbedding(self.latent_size, 0,init_size=2000+1,)
else:
self.decoder = FVAEDecoder(latent_size, hidden_channels, in_out_channels, kernel_size,
dec_n_layers, gin_channels, strides=strides)
self.prior_dist = dist.Normal(0, 1)
def forward(self, x=None, x_mask=None, g=None, infer=False, temperature=1. , **kwargs):
"""
:param x: [B, T, C_in_out]
:param x_mask: [B, T]
:param g: [B, T, C_g]
:return:
"""
x_mask = x_mask[:, None, :] # [B, 1, T]
g = g.transpose(1,2) # [B, C_g, T]
g_for_sqz = g
g_sqz = self.g_pre_net(g_for_sqz)
if not infer:
x = x.transpose(1,2) # [B, C, T]
z_q, m_q, logs_q, x_mask_sqz = self.encoder(x, x_mask, g_sqz)
if self.sqz_prior:
z = z_q
if self.use_pos_embed:
position = self.embed_positions(z.transpose(1,2).abs().sum(-1)).transpose(1,2)
z = z + position
q = self.query_proj(z.mean(dim=-1,keepdim=True).transpose(1,2)) # [B, 1, C=16]
k = self.key_proj(z.transpose(1,2)) # [B, T, C=16]
v = self.value_proj(z.transpose(1,2)) # [B, T, C=256]
attn = torch.bmm(q,k.transpose(1,2)) # [B, 1, T]
attn = F.softmax(attn, dim=-1)
out = torch.bmm(attn, v) # [B, 1, C=256]
style_encoding = out.repeat([1,z_q.shape[-1],1]).transpose(1,2) # [B, C=256, T]
if self.in_out_channels == 71:
x_recon = torch.cat([self.exp_decoder(style_encoding, x_mask, g), self.pose_decoder(style_encoding, x_mask, g)], dim=1)
else:
x_recon = self.decoder(style_encoding, x_mask, g)
else:
if self.in_out_channels == 71:
x_recon = torch.cat([self.exp_decoder(z_q, x_mask, g), self.pose_decoder(z_q, x_mask, g)], dim=1)
else:
x_recon = self.decoder(z_q, x_mask, g)
q_dist = dist.Normal(m_q, logs_q.exp())
if self.use_prior_glow:
logqx = q_dist.log_prob(z_q)
z_p = self.prior_flow(z_q, x_mask_sqz, g_sqz)
logpx = self.prior_dist.log_prob(z_p)
loss_kl = ((logqx - logpx) * x_mask_sqz).sum() / x_mask_sqz.sum() / logqx.shape[1]
else:
loss_kl = torch.distributions.kl_divergence(q_dist, self.prior_dist)
loss_kl = (loss_kl * x_mask_sqz).sum() / x_mask_sqz.sum() / z_q.shape[1]
z_p = z_q
return x_recon.transpose(1,2), loss_kl, z_p.transpose(1,2), m_q.transpose(1,2), logs_q.transpose(1,2)
else:
latent_shape = [g_sqz.shape[0], self.latent_size, g_sqz.shape[2]]
z_p = self.prior_dist.sample(latent_shape).to(g.device) * temperature # [B, latent_size, T_sqz]
if self.use_prior_glow:
z_p = self.prior_flow(z_p, 1, g_sqz, reverse=True)
if self.sqz_prior:
z = z_p
if self.use_pos_embed:
position = self.embed_positions(z.abs().sum(-1))
z += position
q = self.query_proj(z.mean(dim=-1,keepdim=True).transpose(1,2)) # [B, 1, C=16]
k = self.key_proj(z.transpose(1,2)) # [B, T, C=16]
v = self.value_proj(z.transpose(1,2)) # [B, T, C=256]
attn = torch.bmm(q,k.transpose(1,2)) # [B, 1, T]
attn = F.softmax(attn, dim=-1)
out = torch.bmm(attn, v) # [B, 1, C=256]
style_encoding = out.repeat([1,z_p.shape[-1],1]).transpose(1,2) # [B, C=256, T]
x_recon = self.decoder(style_encoding, 1, g)
if self.in_out_channels == 71:
x_recon = torch.cat([self.exp_decoder(style_encoding, 1, g), self.pose_decoder(style_encoding, 1, g)], dim=1)
else:
x_recon = self.decoder(style_encoding, 1, g)
else:
if self.in_out_channels == 71:
x_recon = torch.cat([self.exp_decoder(z_p, 1, g), self.pose_decoder(z_p, 1, g)], dim=1)
else:
x_recon = self.decoder(z_p, 1, g)
return x_recon.transpose(1,2), z_p.transpose(1,2)
class VAEModel(nn.Module):
def __init__(self, in_out_dim=64, audio_in_dim=1024, sqz_prior=False, cond_drop=False, use_prior_flow=True):
super().__init__()
feat_dim = 64
self.blink_embed = nn.Embedding(2, feat_dim)
self.audio_in_dim = audio_in_dim
cond_dim = feat_dim
self.mel_encoder = nn.Sequential(*[
nn.Conv1d(audio_in_dim, 64, 3, 1, 1, bias=False),
nn.BatchNorm1d(64),
nn.GELU(),
nn.Conv1d(64, feat_dim, 3, 1, 1, bias=False)
])
self.cond_drop = cond_drop
if self.cond_drop:
self.dropout = nn.Dropout(0.5)
self.in_dim, self.out_dim = in_out_dim, in_out_dim
self.sqz_prior = sqz_prior
self.use_prior_flow = use_prior_flow
self.vae = FVAE(in_out_channels=in_out_dim, hidden_channels=256, latent_size=16, kernel_size=5,
enc_n_layers=8, dec_n_layers=4, gin_channels=cond_dim, strides=[4,],
use_prior_glow=self.use_prior_flow, glow_hidden=64, glow_kernel_size=3, glow_n_blocks=4,sqz_prior=sqz_prior)
self.downsampler = LambdaLayer(lambda x: F.interpolate(x.transpose(1,2), scale_factor=0.5, mode='linear').transpose(1,2))
# self.downsampler = LambdaLayer(lambda x: F.interpolate(x.transpose(1,2), scale_factor=0.5, mode='nearest').transpose(1,2))
def num_params(self, model, print_out=True, model_name="model"):
parameters = filter(lambda p: p.requires_grad, model.parameters())
parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
if print_out:
print(f'| {model_name} Trainable Parameters: %.3fM' % parameters)
return parameters
@property
def device(self):
return self.vae.parameters().__next__().device
def forward(self, batch, ret, train=True, return_latent=False, temperature=1.):
infer = not train
mask = batch['y_mask'].to(self.device)
mel = batch['audio'].to(self.device)
mel = self.downsampler(mel)
cond_feat = self.mel_encoder(mel.transpose(1,2)).transpose(1,2)
if self.cond_drop:
cond_feat = self.dropout(cond_feat)
if not infer:
exp = batch['y'].to(self.device)
x = exp
x_recon, loss_kl, z_p, m_q, logs_q = self.vae(x=x, x_mask=mask, g=cond_feat, infer=False)
x_recon = x_recon * mask.unsqueeze(-1)
ret['pred'] = x_recon
ret['mask'] = mask
ret['loss_kl'] = loss_kl
if return_latent:
ret['m_q'] = m_q
ret['z_p'] = z_p
return x_recon, loss_kl, m_q, logs_q
else:
x_recon, z_p = self.vae(x=None, x_mask=mask, g=cond_feat, infer=True, temperature=temperature)
x_recon = x_recon * mask.unsqueeze(-1)
ret['pred'] = x_recon
ret['mask'] = mask
return x_recon
class PitchContourVAEModel(nn.Module):
def __init__(self, hparams, in_out_dim=64, audio_in_dim=1024, sqz_prior=False, cond_drop=False, use_prior_flow=True):
super().__init__()
self.hparams = copy.deepcopy(hparams)
feat_dim = 128
self.audio_in_dim = audio_in_dim
self.blink_embed = nn.Embedding(2, feat_dim)
self.mel_encoder = nn.Sequential(*[
nn.Conv1d(audio_in_dim, feat_dim, 3, 1, 1, bias=False),
nn.BatchNorm1d(feat_dim ),
nn.GELU(),
nn.Conv1d(feat_dim , feat_dim, 3, 1, 1, bias=False)
])
self.pitch_embed = Embedding(300, feat_dim, None)
self.pitch_encoder = nn.Sequential(*[
nn.Conv1d(feat_dim, feat_dim , 3, 1, 1, bias=False),
nn.BatchNorm1d(feat_dim),
nn.GELU(),
nn.Conv1d(feat_dim, feat_dim, 3, 1, 1, bias=False)
])
cond_dim = feat_dim + feat_dim + feat_dim
if hparams.get('use_mouth_amp_embed', False):
self.mouth_amp_embed = nn.Parameter(torch.randn(feat_dim))
cond_dim += feat_dim
if hparams.get('use_eye_amp_embed', False):
self.eye_amp_embed = nn.Parameter(torch.randn(feat_dim))
cond_dim += feat_dim
self.cond_proj = nn.Linear(cond_dim, feat_dim, bias=True)
self.cond_drop = cond_drop
if self.cond_drop:
self.dropout = nn.Dropout(0.5)
self.in_dim, self.out_dim = in_out_dim, in_out_dim
self.sqz_prior = sqz_prior
self.use_prior_flow = use_prior_flow
self.vae = FVAE(in_out_channels=in_out_dim, hidden_channels=256, latent_size=16, kernel_size=5,
enc_n_layers=8, dec_n_layers=4, gin_channels=feat_dim, strides=[4,],
use_prior_glow=self.use_prior_flow, glow_hidden=64, glow_kernel_size=3, glow_n_blocks=4,sqz_prior=sqz_prior)
self.downsampler = LambdaLayer(lambda x: F.interpolate(x.transpose(1,2), scale_factor=0.5, mode='nearest').transpose(1,2))
def num_params(self, model, print_out=True, model_name="model"):
parameters = filter(lambda p: p.requires_grad, model.parameters())
parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
if print_out:
print(f'| {model_name} Trainable Parameters: %.3fM' % parameters)
return parameters
@property
def device(self):
return self.vae.parameters().__next__().device
def forward(self, batch, ret, train=True, return_latent=False, temperature=1.):
infer = not train
hparams = self.hparams
mask = batch['y_mask'].to(self.device)
mel = batch['audio'].to(self.device)
f0 = batch['f0'].to(self.device) # [b,t]
if 'blink' not in batch:
batch['blink'] = torch.zeros([f0.shape[0], f0.shape[1], 1], dtype=torch.long, device=f0.device)
blink = batch['blink'].to(self.device)
blink_feat = self.blink_embed(blink.squeeze(2))
blink_feat = self.downsampler(blink_feat)
mel = self.downsampler(mel)
f0 = self.downsampler(f0.unsqueeze(-1)).squeeze(-1)
f0_coarse = f0_to_coarse(f0)
pitch_emb = self.pitch_embed(f0_coarse)
cond_feat = self.mel_encoder(mel.transpose(1,2)).transpose(1,2)
pitch_feat = self.pitch_encoder(pitch_emb.transpose(1,2)).transpose(1,2)
cond_feats = [cond_feat, pitch_feat, blink_feat]
if hparams.get('use_mouth_amp_embed', False):
mouth_amp = batch.get('mouth_amp', torch.ones([f0.shape[0], 1], device=f0.device) * 0.4)
mouth_amp_feat = mouth_amp.unsqueeze(1) * self.mouth_amp_embed.unsqueeze(0)
mouth_amp_feat = mouth_amp_feat.repeat([1,cond_feat.shape[1],1])
cond_feats.append(mouth_amp_feat)
if hparams.get('use_eye_amp_embed', False):
eye_amp = batch.get('eye_amp', torch.ones([f0.shape[0], 1], device=f0.device) * 0.4)
eye_amp_feat = eye_amp.unsqueeze(1) * self.eye_amp_embed.unsqueeze(0)
eye_amp_feat = eye_amp_feat.repeat([1,cond_feat.shape[1],1])
cond_feats.append(eye_amp_feat)
cond_feat = torch.cat(cond_feats, dim=-1)
cond_feat = self.cond_proj(cond_feat)
if self.cond_drop:
cond_feat = self.dropout(cond_feat)
if not infer:
exp = batch['y'].to(self.device)
x = exp
x_recon, loss_kl, z_p, m_q, logs_q = self.vae(x=x, x_mask=mask, g=cond_feat, infer=False)
x_recon = x_recon * mask.unsqueeze(-1)
ret['pred'] = x_recon
ret['mask'] = mask
ret['loss_kl'] = loss_kl
if return_latent:
ret['m_q'] = m_q
ret['z_p'] = z_p
return x_recon, loss_kl, m_q, logs_q
else:
x_recon, z_p = self.vae(x=None, x_mask=mask, g=cond_feat, infer=True, temperature=temperature)
x_recon = x_recon * mask.unsqueeze(-1)
ret['pred'] = x_recon
ret['mask'] = mask
return x_recon
if __name__ == '__main__':
model = FVAE(in_out_channels=64, hidden_channels=128, latent_size=32,kernel_size=3, enc_n_layers=6, dec_n_layers=2,
gin_channels=80, strides=[4], use_prior_glow=False, glow_hidden=128, glow_kernel_size=3, glow_n_blocks=3)
x = torch.rand([8, 64, 1000])
x_mask = torch.ones([8,1,1000])
g = torch.rand([8, 80, 1000])
train_out = model(x,x_mask,g,infer=False)
x_recon, loss_kl, z_p, m_q, logs_q = train_out
print(" ")
infer_out = model(x,x_mask,g,infer=True)
x_recon, z_p = infer_out
print(" ")
|