File size: 14,976 Bytes
e34aada |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import os
import numpy as np
import torch
import torch.nn as nn
from scipy.io import loadmat
from deep_3drecon.deep_3drecon_models.bfm import perspective_projection
class Face3DHelper(nn.Module):
def __init__(self, bfm_dir='deep_3drecon/BFM', keypoint_mode='lm68', use_gpu=True):
super().__init__()
self.keypoint_mode = keypoint_mode # lm68 | mediapipe
self.bfm_dir = bfm_dir
self.load_3dmm()
if use_gpu: self.to("cuda")
def load_3dmm(self):
model = loadmat(os.path.join(self.bfm_dir, "BFM_model_front.mat"))
self.register_buffer('mean_shape',torch.from_numpy(model['meanshape'].transpose()).float()) # mean face shape. [3*N, 1], N=35709, xyz=3, ==> 3*N=107127
mean_shape = self.mean_shape.reshape([-1, 3])
# re-center
mean_shape = mean_shape - torch.mean(mean_shape, dim=0, keepdims=True)
self.mean_shape = mean_shape.reshape([-1, 1])
self.register_buffer('id_base',torch.from_numpy(model['idBase']).float()) # identity basis. [3*N,80], we have 80 eigen faces for identity
self.register_buffer('exp_base',torch.from_numpy(model['exBase']).float()) # expression basis. [3*N,64], we have 64 eigen faces for expression
self.register_buffer('mean_texure',torch.from_numpy(model['meantex'].transpose()).float()) # mean face texture. [3*N,1] (0-255)
self.register_buffer('tex_base',torch.from_numpy(model['texBase']).float()) # texture basis. [3*N,80], rgb=3
self.register_buffer('point_buf',torch.from_numpy(model['point_buf']).float()) # triangle indices for each vertex that lies in. starts from 1. [N,8] (1-F)
self.register_buffer('face_buf',torch.from_numpy(model['tri']).float()) # vertex indices in each triangle. starts from 1. [F,3] (1-N)
if self.keypoint_mode == 'mediapipe':
self.register_buffer('key_points', torch.from_numpy(np.load("deep_3drecon/BFM/index_mp468_from_mesh35709.npy").astype(np.int64)))
unmatch_mask = self.key_points < 0
self.key_points[unmatch_mask] = 0
else:
self.register_buffer('key_points',torch.from_numpy(model['keypoints'].squeeze().astype(np.int_)).long()) # vertex indices of 68 facial landmarks. starts from 1. [68,1]
self.register_buffer('key_mean_shape',self.mean_shape.reshape([-1,3])[self.key_points,:])
self.register_buffer('key_id_base', self.id_base.reshape([-1,3,80])[self.key_points, :, :].reshape([-1,80]))
self.register_buffer('key_exp_base', self.exp_base.reshape([-1,3,64])[self.key_points, :, :].reshape([-1,64]))
self.key_id_base_np = self.key_id_base.cpu().numpy()
self.key_exp_base_np = self.key_exp_base.cpu().numpy()
self.register_buffer('persc_proj', torch.tensor(perspective_projection(focal=1015, center=112)))
def split_coeff(self, coeff):
"""
coeff: Tensor[B, T, c=257] or [T, c=257]
"""
ret_dict = {
'identity': coeff[..., :80], # identity, [b, t, c=80]
'expression': coeff[..., 80:144], # expression, [b, t, c=80]
'texture': coeff[..., 144:224], # texture, [b, t, c=80]
'euler': coeff[..., 224:227], # euler euler for pose, [b, t, c=3]
'translation': coeff[..., 254:257], # translation, [b, t, c=3]
'gamma': coeff[..., 227:254] # lighting, [b, t, c=27]
}
return ret_dict
def reconstruct_face_mesh(self, id_coeff, exp_coeff):
"""
Generate a pose-independent 3D face mesh!
id_coeff: Tensor[T, c=80]
exp_coeff: Tensor[T, c=64]
"""
id_coeff = id_coeff.to(self.key_id_base.device)
exp_coeff = exp_coeff.to(self.key_id_base.device)
mean_face = self.mean_shape.squeeze().reshape([1, -1]) # [3N, 1] ==> [1, 3N]
id_base, exp_base = self.id_base, self.exp_base # [3*N, C]
identity_diff_face = torch.matmul(id_coeff, id_base.transpose(0,1)) # [t,c],[c,3N] ==> [t,3N]
expression_diff_face = torch.matmul(exp_coeff, exp_base.transpose(0,1)) # [t,c],[c,3N] ==> [t,3N]
face = mean_face + identity_diff_face + expression_diff_face # [t,3N]
face = face.reshape([face.shape[0], -1, 3]) # [t,N,3]
# re-centering the face with mean_xyz, so the face will be in [-1, 1]
# mean_xyz = self.mean_shape.squeeze().reshape([-1,3]).mean(dim=0) # [1, 3]
# face_mesh = face - mean_xyz.unsqueeze(0) # [t,N,3]
return face
def reconstruct_cano_lm3d(self, id_coeff, exp_coeff):
"""
Generate 3D landmark with keypoint base!
id_coeff: Tensor[T, c=80]
exp_coeff: Tensor[T, c=64]
"""
id_coeff = id_coeff.to(self.key_id_base.device)
exp_coeff = exp_coeff.to(self.key_id_base.device)
mean_face = self.key_mean_shape.squeeze().reshape([1, -1]) # [3*68, 1] ==> [1, 3*68]
id_base, exp_base = self.key_id_base, self.key_exp_base # [3*68, C]
identity_diff_face = torch.matmul(id_coeff, id_base.transpose(0,1)) # [t,c],[c,3*68] ==> [t,3*68]
expression_diff_face = torch.matmul(exp_coeff, exp_base.transpose(0,1)) # [t,c],[c,3*68] ==> [t,3*68]
face = mean_face + identity_diff_face + expression_diff_face # [t,3N]
face = face.reshape([face.shape[0], -1, 3]) # [t,N,3]
# re-centering the face with mean_xyz, so the face will be in [-1, 1]
# mean_xyz = self.key_mean_shape.squeeze().reshape([-1,3]).mean(dim=0) # [1, 3]
# lm3d = face - mean_xyz.unsqueeze(0) # [t,N,3]
return face
def reconstruct_lm3d(self, id_coeff, exp_coeff, euler, trans, to_camera=True):
"""
Generate 3D landmark with keypoint base!
id_coeff: Tensor[T, c=80]
exp_coeff: Tensor[T, c=64]
"""
id_coeff = id_coeff.to(self.key_id_base.device)
exp_coeff = exp_coeff.to(self.key_id_base.device)
mean_face = self.key_mean_shape.squeeze().reshape([1, -1]) # [3*68, 1] ==> [1, 3*68]
id_base, exp_base = self.key_id_base, self.key_exp_base # [3*68, C]
identity_diff_face = torch.matmul(id_coeff, id_base.transpose(0,1)) # [t,c],[c,3*68] ==> [t,3*68]
expression_diff_face = torch.matmul(exp_coeff, exp_base.transpose(0,1)) # [t,c],[c,3*68] ==> [t,3*68]
face = mean_face + identity_diff_face + expression_diff_face # [t,3N]
face = face.reshape([face.shape[0], -1, 3]) # [t,N,3]
# re-centering the face with mean_xyz, so the face will be in [-1, 1]
rot = self.compute_rotation(euler)
# transform
lm3d = face @ rot + trans.unsqueeze(1) # [t, N, 3]
# to camera
if to_camera:
lm3d[...,-1] = 10 - lm3d[...,-1]
return lm3d
def reconstruct_lm2d_nerf(self, id_coeff, exp_coeff, euler, trans):
lm2d = self.reconstruct_lm2d(id_coeff, exp_coeff, euler, trans, to_camera=False)
lm2d[..., 0] = 1 - lm2d[..., 0]
lm2d[..., 1] = 1 - lm2d[..., 1]
return lm2d
def reconstruct_lm2d(self, id_coeff, exp_coeff, euler, trans, to_camera=True):
"""
Generate 3D landmark with keypoint base!
id_coeff: Tensor[T, c=80]
exp_coeff: Tensor[T, c=64]
"""
is_btc_flag = True if id_coeff.ndim == 3 else False
if is_btc_flag:
b,t,_ = id_coeff.shape
id_coeff = id_coeff.reshape([b*t,-1])
exp_coeff = exp_coeff.reshape([b*t,-1])
euler = euler.reshape([b*t,-1])
trans = trans.reshape([b*t,-1])
id_coeff = id_coeff.to(self.key_id_base.device)
exp_coeff = exp_coeff.to(self.key_id_base.device)
mean_face = self.key_mean_shape.squeeze().reshape([1, -1]) # [3*68, 1] ==> [1, 3*68]
id_base, exp_base = self.key_id_base, self.key_exp_base # [3*68, C]
identity_diff_face = torch.matmul(id_coeff, id_base.transpose(0,1)) # [t,c],[c,3*68] ==> [t,3*68]
expression_diff_face = torch.matmul(exp_coeff, exp_base.transpose(0,1)) # [t,c],[c,3*68] ==> [t,3*68]
face = mean_face + identity_diff_face + expression_diff_face # [t,3N]
face = face.reshape([face.shape[0], -1, 3]) # [t,N,3]
# re-centering the face with mean_xyz, so the face will be in [-1, 1]
rot = self.compute_rotation(euler)
# transform
lm3d = face @ rot + trans.unsqueeze(1) # [t, N, 3]
# to camera
if to_camera:
lm3d[...,-1] = 10 - lm3d[...,-1]
# to image_plane
lm3d = lm3d @ self.persc_proj
lm2d = lm3d[..., :2] / lm3d[..., 2:]
# flip
lm2d[..., 1] = 224 - lm2d[..., 1]
lm2d /= 224
if is_btc_flag:
return lm2d.reshape([b,t,-1,2])
return lm2d
def compute_rotation(self, euler):
"""
Return:
rot -- torch.tensor, size (B, 3, 3) pts @ trans_mat
Parameters:
euler -- torch.tensor, size (B, 3), radian
"""
batch_size = euler.shape[0]
euler = euler.to(self.key_id_base.device)
ones = torch.ones([batch_size, 1]).to(self.key_id_base.device)
zeros = torch.zeros([batch_size, 1]).to(self.key_id_base.device)
x, y, z = euler[:, :1], euler[:, 1:2], euler[:, 2:],
rot_x = torch.cat([
ones, zeros, zeros,
zeros, torch.cos(x), -torch.sin(x),
zeros, torch.sin(x), torch.cos(x)
], dim=1).reshape([batch_size, 3, 3])
rot_y = torch.cat([
torch.cos(y), zeros, torch.sin(y),
zeros, ones, zeros,
-torch.sin(y), zeros, torch.cos(y)
], dim=1).reshape([batch_size, 3, 3])
rot_z = torch.cat([
torch.cos(z), -torch.sin(z), zeros,
torch.sin(z), torch.cos(z), zeros,
zeros, zeros, ones
], dim=1).reshape([batch_size, 3, 3])
rot = rot_z @ rot_y @ rot_x
return rot.permute(0, 2, 1)
def reconstruct_idexp_lm3d(self, id_coeff, exp_coeff):
"""
Generate 3D landmark with keypoint base!
id_coeff: Tensor[T, c=80]
exp_coeff: Tensor[T, c=64]
"""
id_coeff = id_coeff.to(self.key_id_base.device)
exp_coeff = exp_coeff.to(self.key_id_base.device)
id_base, exp_base = self.key_id_base, self.key_exp_base # [3*68, C]
identity_diff_face = torch.matmul(id_coeff, id_base.transpose(0,1)) # [t,c],[c,3*68] ==> [t,3*68]
expression_diff_face = torch.matmul(exp_coeff, exp_base.transpose(0,1)) # [t,c],[c,3*68] ==> [t,3*68]
face = identity_diff_face + expression_diff_face # [t,3N]
face = face.reshape([face.shape[0], -1, 3]) # [t,N,3]
lm3d = face * 10
return lm3d
def reconstruct_idexp_lm3d_np(self, id_coeff, exp_coeff):
"""
Generate 3D landmark with keypoint base!
id_coeff: Tensor[T, c=80]
exp_coeff: Tensor[T, c=64]
"""
id_base, exp_base = self.key_id_base_np, self.key_exp_base_np # [3*68, C]
identity_diff_face = np.dot(id_coeff, id_base.T) # [t,c],[c,3*68] ==> [t,3*68]
expression_diff_face = np.dot(exp_coeff, exp_base.T) # [t,c],[c,3*68] ==> [t,3*68]
face = identity_diff_face + expression_diff_face # [t,3N]
face = face.reshape([face.shape[0], -1, 3]) # [t,N,3]
lm3d = face * 10
return lm3d
def get_eye_mouth_lm_from_lm3d(self, lm3d):
eye_lm = lm3d[:, 17:48] # [T, 31, 3]
mouth_lm = lm3d[:, 48:68] # [T, 20, 3]
return eye_lm, mouth_lm
def get_eye_mouth_lm_from_lm3d_batch(self, lm3d):
eye_lm = lm3d[:, :, 17:48] # [T, 31, 3]
mouth_lm = lm3d[:, :, 48:68] # [T, 20, 3]
return eye_lm, mouth_lm
def close_mouth_for_idexp_lm3d(self, idexp_lm3d, freeze_as_first_frame=True):
idexp_lm3d = idexp_lm3d.reshape([-1, 68,3])
num_frames = idexp_lm3d.shape[0]
eps = 0.0
# [n_landmarks=68,xyz=3], x 代表左右,y代表上下,z代表深度
idexp_lm3d[:,49:54, 1] = (idexp_lm3d[:,49:54, 1] + idexp_lm3d[:,range(59,54,-1), 1])/2 + eps * 2
idexp_lm3d[:,range(59,54,-1), 1] = (idexp_lm3d[:,49:54, 1] + idexp_lm3d[:,range(59,54,-1), 1])/2 - eps * 2
idexp_lm3d[:,61:64, 1] = (idexp_lm3d[:,61:64, 1] + idexp_lm3d[:,range(67,64,-1), 1])/2 + eps
idexp_lm3d[:,range(67,64,-1), 1] = (idexp_lm3d[:,61:64, 1] + idexp_lm3d[:,range(67,64,-1), 1])/2 - eps
idexp_lm3d[:,49:54, 1] += (0.03 - idexp_lm3d[:,49:54, 1].mean(dim=1) + idexp_lm3d[:,61:64, 1].mean(dim=1)).unsqueeze(1).repeat([1,5])
idexp_lm3d[:,range(59,54,-1), 1] += (-0.03 - idexp_lm3d[:,range(59,54,-1), 1].mean(dim=1) + idexp_lm3d[:,range(67,64,-1), 1].mean(dim=1)).unsqueeze(1).repeat([1,5])
if freeze_as_first_frame:
idexp_lm3d[:, 48:68,] = idexp_lm3d[0, 48:68].unsqueeze(0).clone().repeat([num_frames, 1,1])*0
return idexp_lm3d.cpu()
def close_eyes_for_idexp_lm3d(self, idexp_lm3d):
idexp_lm3d = idexp_lm3d.reshape([-1, 68,3])
eps = 0.003
idexp_lm3d[:,37:39, 1] = (idexp_lm3d[:,37:39, 1] + idexp_lm3d[:,range(41,39,-1), 1])/2 + eps
idexp_lm3d[:,range(41,39,-1), 1] = (idexp_lm3d[:,37:39, 1] + idexp_lm3d[:,range(41,39,-1), 1])/2 - eps
idexp_lm3d[:,43:45, 1] = (idexp_lm3d[:,43:45, 1] + idexp_lm3d[:,range(47,45,-1), 1])/2 + eps
idexp_lm3d[:,range(47,45,-1), 1] = (idexp_lm3d[:,43:45, 1] + idexp_lm3d[:,range(47,45,-1), 1])/2 - eps
return idexp_lm3d
if __name__ == '__main__':
import cv2
font = cv2.FONT_HERSHEY_SIMPLEX
face_mesh_helper = Face3DHelper('deep_3drecon/BFM')
coeff_npy = 'data/coeff_fit_mp/crop_nana_003_coeff_fit_mp.npy'
coeff_dict = np.load(coeff_npy, allow_pickle=True).tolist()
lm3d = face_mesh_helper.reconstruct_lm2d(torch.tensor(coeff_dict['id']).cuda(), torch.tensor(coeff_dict['exp']).cuda(), torch.tensor(coeff_dict['euler']).cuda(), torch.tensor(coeff_dict['trans']).cuda() )
WH = 512
lm3d = (lm3d * WH).cpu().int().numpy()
eye_idx = list(range(36,48))
mouth_idx = list(range(48,68))
import imageio
debug_name = 'debug_lm3d.mp4'
writer = imageio.get_writer(debug_name, fps=25)
for i_img in range(len(lm3d)):
lm2d = lm3d[i_img ,:, :2] # [68, 2]
img = np.ones([WH, WH, 3], dtype=np.uint8) * 255
for i in range(len(lm2d)):
x, y = lm2d[i]
if i in eye_idx:
color = (0,0,255)
elif i in mouth_idx:
color = (0,255,0)
else:
color = (255,0,0)
img = cv2.circle(img, center=(x,y), radius=3, color=color, thickness=-1)
img = cv2.putText(img, f"{i}", org=(x,y), fontFace=font, fontScale=0.3, color=(255,0,0))
writer.append_data(img)
writer.close()
|