File size: 4,839 Bytes
e34aada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
from openTSNE import TSNE
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import random

def visualize(
    x,
    y,
    ax=None,
    title=None,
    draw_legend=True,
    draw_centers=False,
    draw_cluster_labels=False,
    colors=None,
    legend_kwargs=None,
    label_order=None,
    **kwargs
):

    if ax is None:
        _, ax = matplotlib.pyplot.subplots(figsize=(10, 8))

    if title is not None:
        ax.set_title(title)

    plot_params = {"alpha": kwargs.get("alpha", 0.6), "s": kwargs.get("s", 1)}

    # Create main plot
    if label_order is not None:
        assert all(np.isin(np.unique(y), label_order))
        classes = [l for l in label_order if l in np.unique(y)]
    else:
        classes = np.unique(y)
    if colors is None:
        default_colors = matplotlib.rcParams["axes.prop_cycle"]
        colors = {k: v["color"] for k, v in zip(classes, default_colors())}

    point_colors = list(map(colors.get, y))

    ax.scatter(x[:, 0], x[:, 1], c=point_colors, rasterized=True, **plot_params)

    # Plot mediods
    if draw_centers:
        centers = []
        for yi in classes:
            mask = yi == y
            centers.append(np.median(x[mask, :2], axis=0))
        centers = np.array(centers)

        center_colors = list(map(colors.get, classes))
        ax.scatter(
            centers[:, 0], centers[:, 1], c=center_colors, s=48, alpha=1, edgecolor="k"
        )

        # Draw mediod labels
        if draw_cluster_labels:
            for idx, label in enumerate(classes):
                ax.text(
                    centers[idx, 0],
                    centers[idx, 1] + 2.2,
                    label,
                    fontsize=kwargs.get("fontsize", 6),
                    horizontalalignment="center",
                )

    # Hide ticks and axis
    ax.set_xticks([]), ax.set_yticks([]), ax.axis("off")

    if draw_legend:
        legend_handles = [
            matplotlib.lines.Line2D(
                [],
                [],
                marker="s",
                color="w",
                markerfacecolor=colors[yi],
                ms=10,
                alpha=1,
                linewidth=0,
                label=yi,
                markeredgecolor="k",
            )
            for yi in classes
        ]
        legend_kwargs_ = dict(loc="best", bbox_to_anchor=(0.05, 0.5), frameon=False, )
        if legend_kwargs is not None:
            legend_kwargs_.update(legend_kwargs)
        ax.legend(handles=legend_handles, **legend_kwargs_)


tsne = TSNE(
    perplexity=30,
    metric="euclidean",
    n_jobs=8,
    random_state=42,
    verbose=True,
)

idexp_lm3d_pred_lrs3 = np.load("infer_out/tmp_npys/lrs3_pred_all.npy")
idx = np.random.choice(np.arange(len(idexp_lm3d_pred_lrs3)), 10000)
idexp_lm3d_pred_lrs3 = idexp_lm3d_pred_lrs3[idx]

person_ds = np.load("data/binary/videos/May/trainval_dataset.npy", allow_pickle=True).tolist()
person_idexp_mean = person_ds['idexp_lm3d_mean'].reshape([1,204])
person_idexp_std = person_ds['idexp_lm3d_std'].reshape([1,204])
person_idexp_lm3d_train = np.stack([s['idexp_lm3d_normalized'].reshape([204,]) for s in person_ds['train_samples']])
person_idexp_lm3d_val = np.stack([s['idexp_lm3d_normalized'].reshape([204,]) for s in person_ds['val_samples']])

lrs3_stats = np.load('/home/yezhenhui/datasets/binary/lrs3_0702/stats.npy',allow_pickle=True).tolist()
lrs3_idexp_mean = lrs3_stats['idexp_lm3d_mean'].reshape([1,204])
lrs3_idexp_std = lrs3_stats['idexp_lm3d_std'].reshape([1,204])
person_idexp_lm3d_train = person_idexp_lm3d_train * person_idexp_std + person_idexp_mean
# person_idexp_lm3d_train = (person_idexp_lm3d_train - lrs3_idexp_mean) / lrs3_idexp_std
person_idexp_lm3d_val = person_idexp_lm3d_val * person_idexp_std + person_idexp_mean
# person_idexp_lm3d_val = (person_idexp_lm3d_val - lrs3_idexp_mean) / lrs3_idexp_std
idexp_lm3d_pred_lrs3 = idexp_lm3d_pred_lrs3 * lrs3_idexp_std + lrs3_idexp_mean


idexp_lm3d_pred_vae = np.load("infer_out/tmp_npys/pred_exp_0_vae.npy").reshape([-1,204])
idexp_lm3d_pred_postnet = np.load("infer_out/tmp_npys/pred_exp_0_postnet_hubert.npy").reshape([-1,204])
# idexp_lm3d_pred_postnet = idexp_lm3d_pred_postnet * lrs3_idexp_std + lrs3_idexp_mean

idexp_lm3d_all = np.concatenate([idexp_lm3d_pred_lrs3, person_idexp_lm3d_train,idexp_lm3d_pred_vae, idexp_lm3d_pred_postnet])
idexp_lm3d_all_emb = tsne.fit(idexp_lm3d_all) # array(float64) [B,50]==>[B, 2]
# z_p_emb = tsne.fit(z_p) # array(float64) [B,50]==>[B, 2]
y1 = ["pred_lrs3" for _ in range(len(idexp_lm3d_pred_lrs3))]
y2 = ["person_train" for _ in range(len(person_idexp_lm3d_train))]
y3 = ["vae" for _ in range(len(idexp_lm3d_pred_vae))]
y4 = ["postnet" for _ in range(len(idexp_lm3d_pred_postnet))]
visualize(idexp_lm3d_all_emb, y1+y2+y3+y4)
plt.savefig("infer_out/tmp_npys/lrs3_pred_all_0k.png")