|
import streamlit as st |
|
st.set_page_config(layout="wide") |
|
from diffsynth import SDVideoPipelineRunner |
|
import os |
|
import numpy as np |
|
|
|
|
|
def load_model_list(folder): |
|
file_list = os.listdir(folder) |
|
file_list = [i for i in file_list if i.endswith(".safetensors") or i.endswith(".pth") or i.endswith(".ckpt")] |
|
file_list = sorted(file_list) |
|
return file_list |
|
|
|
|
|
def match_processor_id(model_name, supported_processor_id_list): |
|
sorted_processor_id = [i[1] for i in sorted([(-len(i), i) for i in supported_processor_id_list])] |
|
for processor_id in sorted_processor_id: |
|
if processor_id in model_name: |
|
return supported_processor_id_list.index(processor_id) + 1 |
|
return 0 |
|
|
|
|
|
config = { |
|
"models": { |
|
"model_list": [], |
|
"textual_inversion_folder": "models/textual_inversion", |
|
"device": "cuda", |
|
"lora_alphas": [], |
|
"controlnet_units": [] |
|
}, |
|
"data": { |
|
"input_frames": None, |
|
"controlnet_frames": [], |
|
"output_folder": "output", |
|
"fps": 60 |
|
}, |
|
"pipeline": { |
|
"seed": 0, |
|
"pipeline_inputs": {} |
|
} |
|
} |
|
|
|
|
|
with st.expander("Model", expanded=True): |
|
stable_diffusion_ckpt = st.selectbox("Stable Diffusion", ["None"] + load_model_list("models/stable_diffusion")) |
|
if stable_diffusion_ckpt != "None": |
|
config["models"]["model_list"].append(os.path.join("models/stable_diffusion", stable_diffusion_ckpt)) |
|
animatediff_ckpt = st.selectbox("AnimateDiff", ["None"] + load_model_list("models/AnimateDiff")) |
|
if animatediff_ckpt != "None": |
|
config["models"]["model_list"].append(os.path.join("models/AnimateDiff", animatediff_ckpt)) |
|
column_lora, column_lora_alpha = st.columns([2, 1]) |
|
with column_lora: |
|
sd_lora_ckpt = st.selectbox("LoRA", ["None"] + load_model_list("models/lora")) |
|
with column_lora_alpha: |
|
lora_alpha = st.slider("LoRA Alpha", min_value=-4.0, max_value=4.0, value=1.0, step=0.1) |
|
if sd_lora_ckpt != "None": |
|
config["models"]["model_list"].append(os.path.join("models/lora", sd_lora_ckpt)) |
|
config["models"]["lora_alphas"].append(lora_alpha) |
|
|
|
|
|
with st.expander("Data", expanded=True): |
|
with st.container(border=True): |
|
input_video = st.text_input("Input Video File Path (e.g., data/your_video.mp4)", value="") |
|
column_height, column_width, column_start_frame_index, column_end_frame_index = st.columns([2, 2, 1, 1]) |
|
with column_height: |
|
height = st.select_slider("Height", options=[256, 512, 768, 1024, 1536, 2048], value=1024) |
|
with column_width: |
|
width = st.select_slider("Width", options=[256, 512, 768, 1024, 1536, 2048], value=1024) |
|
with column_start_frame_index: |
|
start_frame_id = st.number_input("Start Frame id", value=0) |
|
with column_end_frame_index: |
|
end_frame_id = st.number_input("End Frame id", value=16) |
|
if input_video != "": |
|
config["data"]["input_frames"] = { |
|
"video_file": input_video, |
|
"image_folder": None, |
|
"height": height, |
|
"width": width, |
|
"start_frame_id": start_frame_id, |
|
"end_frame_id": end_frame_id |
|
} |
|
with st.container(border=True): |
|
output_video = st.text_input("Output Video File Path (e.g., data/a_folder_to_save_something)", value="output") |
|
fps = st.number_input("FPS", value=60) |
|
config["data"]["output_folder"] = output_video |
|
config["data"]["fps"] = fps |
|
|
|
|
|
with st.expander("ControlNet Units", expanded=True): |
|
supported_processor_id_list = ["canny", "depth", "softedge", "lineart", "lineart_anime", "openpose", "tile"] |
|
controlnet_units = st.tabs(["ControlNet Unit 0", "ControlNet Unit 1", "ControlNet Unit 2"]) |
|
for controlnet_id in range(len(controlnet_units)): |
|
with controlnet_units[controlnet_id]: |
|
controlnet_ckpt = st.selectbox("ControlNet", ["None"] + load_model_list("models/ControlNet"), |
|
key=f"controlnet_ckpt_{controlnet_id}") |
|
processor_id = st.selectbox("Processor", ["None"] + supported_processor_id_list, |
|
index=match_processor_id(controlnet_ckpt, supported_processor_id_list), |
|
disabled=controlnet_ckpt == "None", key=f"processor_id_{controlnet_id}") |
|
controlnet_scale = st.slider("Scale", min_value=0.0, max_value=1.0, step=0.01, value=0.5, |
|
disabled=controlnet_ckpt == "None", key=f"controlnet_scale_{controlnet_id}") |
|
use_input_video_as_controlnet_input = st.checkbox("Use input video as ControlNet input", value=True, |
|
disabled=controlnet_ckpt == "None", |
|
key=f"use_input_video_as_controlnet_input_{controlnet_id}") |
|
if not use_input_video_as_controlnet_input: |
|
controlnet_input_video = st.text_input("ControlNet Input Video File Path", value="", |
|
disabled=controlnet_ckpt == "None", key=f"controlnet_input_video_{controlnet_id}") |
|
column_height, column_width, column_start_frame_index, column_end_frame_index = st.columns([2, 2, 1, 1]) |
|
with column_height: |
|
height = st.select_slider("Height", options=[256, 512, 768, 1024, 1536, 2048], value=1024, |
|
disabled=controlnet_ckpt == "None", key=f"controlnet_height_{controlnet_id}") |
|
with column_width: |
|
width = st.select_slider("Width", options=[256, 512, 768, 1024, 1536, 2048], value=1024, |
|
disabled=controlnet_ckpt == "None", key=f"controlnet_width_{controlnet_id}") |
|
with column_start_frame_index: |
|
start_frame_id = st.number_input("Start Frame id", value=0, |
|
disabled=controlnet_ckpt == "None", key=f"controlnet_start_frame_id_{controlnet_id}") |
|
with column_end_frame_index: |
|
end_frame_id = st.number_input("End Frame id", value=16, |
|
disabled=controlnet_ckpt == "None", key=f"controlnet_end_frame_id_{controlnet_id}") |
|
if input_video != "": |
|
config["data"]["input_video"] = { |
|
"video_file": input_video, |
|
"image_folder": None, |
|
"height": height, |
|
"width": width, |
|
"start_frame_id": start_frame_id, |
|
"end_frame_id": end_frame_id |
|
} |
|
if controlnet_ckpt != "None": |
|
config["models"]["model_list"].append(os.path.join("models/ControlNet", controlnet_ckpt)) |
|
config["models"]["controlnet_units"].append({ |
|
"processor_id": processor_id, |
|
"model_path": os.path.join("models/ControlNet", controlnet_ckpt), |
|
"scale": controlnet_scale, |
|
}) |
|
if use_input_video_as_controlnet_input: |
|
config["data"]["controlnet_frames"].append(config["data"]["input_frames"]) |
|
else: |
|
config["data"]["controlnet_frames"].append({ |
|
"video_file": input_video, |
|
"image_folder": None, |
|
"height": height, |
|
"width": width, |
|
"start_frame_id": start_frame_id, |
|
"end_frame_id": end_frame_id |
|
}) |
|
|
|
|
|
with st.container(border=True): |
|
with st.expander("Seed", expanded=True): |
|
use_fixed_seed = st.checkbox("Use fixed seed", value=False) |
|
if use_fixed_seed: |
|
seed = st.number_input("Random seed", min_value=0, max_value=10**9, step=1, value=0) |
|
else: |
|
seed = np.random.randint(0, 10**9) |
|
with st.expander("Textual Guidance", expanded=True): |
|
prompt = st.text_area("Positive prompt") |
|
negative_prompt = st.text_area("Negative prompt") |
|
column_cfg_scale, column_clip_skip = st.columns(2) |
|
with column_cfg_scale: |
|
cfg_scale = st.slider("Classifier-free guidance scale", min_value=1.0, max_value=10.0, value=7.0) |
|
with column_clip_skip: |
|
clip_skip = st.slider("Clip Skip", min_value=1, max_value=4, value=1) |
|
with st.expander("Denoising", expanded=True): |
|
column_num_inference_steps, column_denoising_strength = st.columns(2) |
|
with column_num_inference_steps: |
|
num_inference_steps = st.slider("Inference steps", min_value=1, max_value=100, value=10) |
|
with column_denoising_strength: |
|
denoising_strength = st.slider("Denoising strength", min_value=0.0, max_value=1.0, value=1.0) |
|
with st.expander("Efficiency", expanded=False): |
|
animatediff_batch_size = st.slider("Animatediff batch size (sliding window size)", min_value=1, max_value=32, value=16, step=1) |
|
animatediff_stride = st.slider("Animatediff stride", |
|
min_value=1, |
|
max_value=max(2, animatediff_batch_size), |
|
value=max(1, animatediff_batch_size // 2), |
|
step=1) |
|
unet_batch_size = st.slider("UNet batch size", min_value=1, max_value=32, value=1, step=1) |
|
controlnet_batch_size = st.slider("ControlNet batch size", min_value=1, max_value=32, value=1, step=1) |
|
cross_frame_attention = st.checkbox("Enable Cross-Frame Attention", value=False) |
|
config["pipeline"]["seed"] = seed |
|
config["pipeline"]["pipeline_inputs"] = { |
|
"prompt": prompt, |
|
"negative_prompt": negative_prompt, |
|
"cfg_scale": cfg_scale, |
|
"clip_skip": clip_skip, |
|
"denoising_strength": denoising_strength, |
|
"num_inference_steps": num_inference_steps, |
|
"animatediff_batch_size": animatediff_batch_size, |
|
"animatediff_stride": animatediff_stride, |
|
"unet_batch_size": unet_batch_size, |
|
"controlnet_batch_size": controlnet_batch_size, |
|
"cross_frame_attention": cross_frame_attention, |
|
} |
|
|
|
run_button = st.button("☢️Run☢️", type="primary") |
|
if run_button: |
|
SDVideoPipelineRunner(in_streamlit=True).run(config) |
|
|