|
from ..models import ModelManager, SDXLTextEncoder, SDXLTextEncoder2, SDXLUNet, SDXLVAEDecoder, SDXLVAEEncoder |
|
|
|
from ..prompts import SDXLPrompter |
|
from ..schedulers import EnhancedDDIMScheduler |
|
import torch |
|
from tqdm import tqdm |
|
from PIL import Image |
|
import numpy as np |
|
|
|
|
|
class SDXLImagePipeline(torch.nn.Module): |
|
|
|
def __init__(self, device="cuda", torch_dtype=torch.float16): |
|
super().__init__() |
|
self.scheduler = EnhancedDDIMScheduler() |
|
self.prompter = SDXLPrompter() |
|
self.device = device |
|
self.torch_dtype = torch_dtype |
|
|
|
self.text_encoder: SDXLTextEncoder = None |
|
self.text_encoder_2: SDXLTextEncoder2 = None |
|
self.unet: SDXLUNet = None |
|
self.vae_decoder: SDXLVAEDecoder = None |
|
self.vae_encoder: SDXLVAEEncoder = None |
|
|
|
|
|
def fetch_main_models(self, model_manager: ModelManager): |
|
self.text_encoder = model_manager.text_encoder |
|
self.text_encoder_2 = model_manager.text_encoder_2 |
|
self.unet = model_manager.unet |
|
self.vae_decoder = model_manager.vae_decoder |
|
self.vae_encoder = model_manager.vae_encoder |
|
|
|
self.prompter.load_textual_inversion(model_manager.textual_inversion_dict) |
|
|
|
|
|
def fetch_controlnet_models(self, model_manager: ModelManager, **kwargs): |
|
|
|
pass |
|
|
|
|
|
def fetch_prompter(self, model_manager: ModelManager): |
|
self.prompter.load_from_model_manager(model_manager) |
|
|
|
|
|
@staticmethod |
|
def from_model_manager(model_manager: ModelManager, controlnet_config_units = [], **kwargs): |
|
pipe = SDXLImagePipeline( |
|
device=model_manager.device, |
|
torch_dtype=model_manager.torch_dtype, |
|
) |
|
pipe.fetch_main_models(model_manager) |
|
pipe.fetch_prompter(model_manager) |
|
pipe.fetch_controlnet_models(model_manager, controlnet_config_units=controlnet_config_units) |
|
return pipe |
|
|
|
|
|
def preprocess_image(self, image): |
|
image = torch.Tensor(np.array(image, dtype=np.float32) * (2 / 255) - 1).permute(2, 0, 1).unsqueeze(0) |
|
return image |
|
|
|
|
|
def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32): |
|
image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)[0] |
|
image = image.cpu().permute(1, 2, 0).numpy() |
|
image = Image.fromarray(((image / 2 + 0.5).clip(0, 1) * 255).astype("uint8")) |
|
return image |
|
|
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt, |
|
negative_prompt="", |
|
cfg_scale=7.5, |
|
clip_skip=1, |
|
clip_skip_2=2, |
|
input_image=None, |
|
controlnet_image=None, |
|
denoising_strength=1.0, |
|
height=1024, |
|
width=1024, |
|
num_inference_steps=20, |
|
tiled=False, |
|
tile_size=64, |
|
tile_stride=32, |
|
progress_bar_cmd=tqdm, |
|
progress_bar_st=None, |
|
): |
|
|
|
self.scheduler.set_timesteps(num_inference_steps, denoising_strength) |
|
|
|
|
|
if input_image is not None: |
|
image = self.preprocess_image(input_image).to(device=self.device, dtype=self.torch_dtype) |
|
latents = self.vae_encoder(image.to(torch.float32), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).to(self.torch_dtype) |
|
noise = torch.randn((1, 4, height//8, width//8), device=self.device, dtype=self.torch_dtype) |
|
latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0]) |
|
else: |
|
latents = torch.randn((1, 4, height//8, width//8), device=self.device, dtype=self.torch_dtype) |
|
|
|
|
|
add_prompt_emb_posi, prompt_emb_posi = self.prompter.encode_prompt( |
|
self.text_encoder, |
|
self.text_encoder_2, |
|
prompt, |
|
clip_skip=clip_skip, clip_skip_2=clip_skip_2, |
|
device=self.device, |
|
positive=True, |
|
) |
|
if cfg_scale != 1.0: |
|
add_prompt_emb_nega, prompt_emb_nega = self.prompter.encode_prompt( |
|
self.text_encoder, |
|
self.text_encoder_2, |
|
negative_prompt, |
|
clip_skip=clip_skip, clip_skip_2=clip_skip_2, |
|
device=self.device, |
|
positive=False, |
|
) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, denoising_strength) |
|
|
|
|
|
add_time_id = torch.tensor([height, width, 0, 0, height, width], device=self.device) |
|
|
|
|
|
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): |
|
timestep = torch.IntTensor((timestep,))[0].to(self.device) |
|
|
|
|
|
if cfg_scale != 1.0: |
|
noise_pred_posi = self.unet( |
|
latents, timestep, prompt_emb_posi, |
|
add_time_id=add_time_id, add_text_embeds=add_prompt_emb_posi, |
|
tiled=tiled, tile_size=tile_size, tile_stride=tile_stride |
|
) |
|
noise_pred_nega = self.unet( |
|
latents, timestep, prompt_emb_nega, |
|
add_time_id=add_time_id, add_text_embeds=add_prompt_emb_nega, |
|
tiled=tiled, tile_size=tile_size, tile_stride=tile_stride |
|
) |
|
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) |
|
else: |
|
noise_pred = self.unet( |
|
latents, timestep, prompt_emb_posi, |
|
add_time_id=add_time_id, add_text_embeds=add_prompt_emb_posi, |
|
tiled=tiled, tile_size=tile_size, tile_stride=tile_stride |
|
) |
|
|
|
latents = self.scheduler.step(noise_pred, timestep, latents) |
|
|
|
if progress_bar_st is not None: |
|
progress_bar_st.progress(progress_id / len(self.scheduler.timesteps)) |
|
|
|
|
|
image = self.decode_image(latents.to(torch.float32), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) |
|
|
|
return image |
|
|