|
from ..models import ModelManager, SDTextEncoder, SDUNet, SDVAEDecoder, SDVAEEncoder |
|
from ..controlnets import MultiControlNetManager, ControlNetUnit, ControlNetConfigUnit, Annotator |
|
from ..prompts import SDPrompter |
|
from ..schedulers import EnhancedDDIMScheduler |
|
from .dancer import lets_dance |
|
from typing import List |
|
import torch |
|
from tqdm import tqdm |
|
from PIL import Image |
|
import numpy as np |
|
|
|
|
|
class SDImagePipeline(torch.nn.Module): |
|
|
|
def __init__(self, device="cuda", torch_dtype=torch.float16): |
|
super().__init__() |
|
self.scheduler = EnhancedDDIMScheduler() |
|
self.prompter = SDPrompter() |
|
self.device = device |
|
self.torch_dtype = torch_dtype |
|
|
|
self.text_encoder: SDTextEncoder = None |
|
self.unet: SDUNet = None |
|
self.vae_decoder: SDVAEDecoder = None |
|
self.vae_encoder: SDVAEEncoder = None |
|
self.controlnet: MultiControlNetManager = None |
|
|
|
|
|
def fetch_main_models(self, model_manager: ModelManager): |
|
self.text_encoder = model_manager.text_encoder |
|
self.unet = model_manager.unet |
|
self.vae_decoder = model_manager.vae_decoder |
|
self.vae_encoder = model_manager.vae_encoder |
|
|
|
|
|
def fetch_controlnet_models(self, model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[]): |
|
controlnet_units = [] |
|
for config in controlnet_config_units: |
|
controlnet_unit = ControlNetUnit( |
|
Annotator(config.processor_id), |
|
model_manager.get_model_with_model_path(config.model_path), |
|
config.scale |
|
) |
|
controlnet_units.append(controlnet_unit) |
|
self.controlnet = MultiControlNetManager(controlnet_units) |
|
|
|
|
|
def fetch_prompter(self, model_manager: ModelManager): |
|
self.prompter.load_from_model_manager(model_manager) |
|
|
|
|
|
@staticmethod |
|
def from_model_manager(model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[]): |
|
pipe = SDImagePipeline( |
|
device=model_manager.device, |
|
torch_dtype=model_manager.torch_dtype, |
|
) |
|
pipe.fetch_main_models(model_manager) |
|
pipe.fetch_prompter(model_manager) |
|
pipe.fetch_controlnet_models(model_manager, controlnet_config_units) |
|
return pipe |
|
|
|
|
|
def preprocess_image(self, image): |
|
image = torch.Tensor(np.array(image, dtype=np.float32) * (2 / 255) - 1).permute(2, 0, 1).unsqueeze(0) |
|
return image |
|
|
|
|
|
def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32): |
|
image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)[0] |
|
image = image.cpu().permute(1, 2, 0).numpy() |
|
image = Image.fromarray(((image / 2 + 0.5).clip(0, 1) * 255).astype("uint8")) |
|
return image |
|
|
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt, |
|
negative_prompt="", |
|
cfg_scale=7.5, |
|
clip_skip=1, |
|
input_image=None, |
|
controlnet_image=None, |
|
denoising_strength=1.0, |
|
height=512, |
|
width=512, |
|
num_inference_steps=20, |
|
tiled=False, |
|
tile_size=64, |
|
tile_stride=32, |
|
progress_bar_cmd=tqdm, |
|
progress_bar_st=None, |
|
): |
|
|
|
self.scheduler.set_timesteps(num_inference_steps, denoising_strength) |
|
|
|
|
|
if input_image is not None: |
|
image = self.preprocess_image(input_image).to(device=self.device, dtype=self.torch_dtype) |
|
latents = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) |
|
noise = torch.randn((1, 4, height//8, width//8), device=self.device, dtype=self.torch_dtype) |
|
latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0]) |
|
else: |
|
latents = torch.randn((1, 4, height//8, width//8), device=self.device, dtype=self.torch_dtype) |
|
|
|
|
|
prompt_emb_posi = self.prompter.encode_prompt(self.text_encoder, prompt, clip_skip=clip_skip, device=self.device, positive=True) |
|
prompt_emb_nega = self.prompter.encode_prompt(self.text_encoder, negative_prompt, clip_skip=clip_skip, device=self.device, positive=False) |
|
|
|
|
|
if controlnet_image is not None: |
|
controlnet_image = self.controlnet.process_image(controlnet_image).to(device=self.device, dtype=self.torch_dtype) |
|
controlnet_image = controlnet_image.unsqueeze(1) |
|
|
|
|
|
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): |
|
timestep = torch.IntTensor((timestep,))[0].to(self.device) |
|
|
|
|
|
noise_pred_posi = lets_dance( |
|
self.unet, motion_modules=None, controlnet=self.controlnet, |
|
sample=latents, timestep=timestep, encoder_hidden_states=prompt_emb_posi, controlnet_frames=controlnet_image, |
|
tiled=tiled, tile_size=tile_size, tile_stride=tile_stride, |
|
device=self.device, vram_limit_level=0 |
|
) |
|
noise_pred_nega = lets_dance( |
|
self.unet, motion_modules=None, controlnet=self.controlnet, |
|
sample=latents, timestep=timestep, encoder_hidden_states=prompt_emb_nega, controlnet_frames=controlnet_image, |
|
tiled=tiled, tile_size=tile_size, tile_stride=tile_stride, |
|
device=self.device, vram_limit_level=0 |
|
) |
|
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, timestep, latents) |
|
|
|
|
|
if progress_bar_st is not None: |
|
progress_bar_st.progress(progress_id / len(self.scheduler.timesteps)) |
|
|
|
|
|
image = self.decode_image(latents, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) |
|
|
|
return image |
|
|