|
from ..patch_match import PyramidPatchMatcher |
|
import os |
|
import numpy as np |
|
from PIL import Image |
|
from tqdm import tqdm |
|
|
|
|
|
class InterpolationModeRunner: |
|
def __init__(self): |
|
pass |
|
|
|
def get_index_dict(self, index_style): |
|
index_dict = {} |
|
for i, index in enumerate(index_style): |
|
index_dict[index] = i |
|
return index_dict |
|
|
|
def get_weight(self, l, m, r): |
|
weight_l, weight_r = abs(m - r), abs(m - l) |
|
if weight_l + weight_r == 0: |
|
weight_l, weight_r = 0.5, 0.5 |
|
else: |
|
weight_l, weight_r = weight_l / (weight_l + weight_r), weight_r / (weight_l + weight_r) |
|
return weight_l, weight_r |
|
|
|
def get_task_group(self, index_style, n): |
|
task_group = [] |
|
index_style = sorted(index_style) |
|
|
|
if index_style[0]>0: |
|
tasks = [] |
|
for m in range(index_style[0]): |
|
tasks.append((index_style[0], m, index_style[0])) |
|
task_group.append(tasks) |
|
|
|
for l, r in zip(index_style[:-1], index_style[1:]): |
|
tasks = [] |
|
for m in range(l, r): |
|
tasks.append((l, m, r)) |
|
task_group.append(tasks) |
|
|
|
tasks = [] |
|
for m in range(index_style[-1], n): |
|
tasks.append((index_style[-1], m, index_style[-1])) |
|
task_group.append(tasks) |
|
return task_group |
|
|
|
def run(self, frames_guide, frames_style, index_style, batch_size, ebsynth_config, save_path=None): |
|
patch_match_engine = PyramidPatchMatcher( |
|
image_height=frames_style[0].shape[0], |
|
image_width=frames_style[0].shape[1], |
|
channel=3, |
|
use_mean_target_style=False, |
|
use_pairwise_patch_error=True, |
|
**ebsynth_config |
|
) |
|
|
|
index_dict = self.get_index_dict(index_style) |
|
task_group = self.get_task_group(index_style, len(frames_guide)) |
|
|
|
for tasks in task_group: |
|
index_start, index_end = min([i[1] for i in tasks]), max([i[1] for i in tasks]) |
|
for batch_id in tqdm(range(0, len(tasks), batch_size), desc=f"Rendering frames {index_start}...{index_end}"): |
|
tasks_batch = tasks[batch_id: min(batch_id+batch_size, len(tasks))] |
|
source_guide, target_guide, source_style = [], [], [] |
|
for l, m, r in tasks_batch: |
|
|
|
source_guide.append(frames_guide[l]) |
|
target_guide.append(frames_guide[m]) |
|
source_style.append(frames_style[index_dict[l]]) |
|
|
|
source_guide.append(frames_guide[r]) |
|
target_guide.append(frames_guide[m]) |
|
source_style.append(frames_style[index_dict[r]]) |
|
source_guide = np.stack(source_guide) |
|
target_guide = np.stack(target_guide) |
|
source_style = np.stack(source_style) |
|
_, target_style = patch_match_engine.estimate_nnf(source_guide, target_guide, source_style) |
|
if save_path is not None: |
|
for frame_l, frame_r, (l, m, r) in zip(target_style[0::2], target_style[1::2], tasks_batch): |
|
weight_l, weight_r = self.get_weight(l, m, r) |
|
frame = frame_l * weight_l + frame_r * weight_r |
|
frame = frame.clip(0, 255).astype("uint8") |
|
Image.fromarray(frame).save(os.path.join(save_path, "%05d.png" % m)) |
|
|
|
|
|
class InterpolationModeSingleFrameRunner: |
|
def __init__(self): |
|
pass |
|
|
|
def run(self, frames_guide, frames_style, index_style, batch_size, ebsynth_config, save_path=None): |
|
|
|
tracking_window_size = ebsynth_config["tracking_window_size"] |
|
if tracking_window_size * 2 >= batch_size: |
|
raise ValueError("batch_size should be larger than track_window_size * 2") |
|
frame_style = frames_style[0] |
|
frame_guide = frames_guide[index_style[0]] |
|
patch_match_engine = PyramidPatchMatcher( |
|
image_height=frame_style.shape[0], |
|
image_width=frame_style.shape[1], |
|
channel=3, |
|
**ebsynth_config |
|
) |
|
|
|
frame_id, n = 0, len(frames_guide) |
|
for i in tqdm(range(0, n, batch_size - tracking_window_size * 2), desc=f"Rendering frames 0...{n}"): |
|
if i + batch_size > n: |
|
l, r = max(n - batch_size, 0), n |
|
else: |
|
l, r = i, i + batch_size |
|
source_guide = np.stack([frame_guide] * (r-l)) |
|
target_guide = np.stack([frames_guide[i] for i in range(l, r)]) |
|
source_style = np.stack([frame_style] * (r-l)) |
|
_, target_style = patch_match_engine.estimate_nnf(source_guide, target_guide, source_style) |
|
for i, frame in zip(range(l, r), target_style): |
|
if i==frame_id: |
|
frame = frame.clip(0, 255).astype("uint8") |
|
Image.fromarray(frame).save(os.path.join(save_path, "%05d.png" % frame_id)) |
|
frame_id += 1 |
|
if r < n and r-frame_id <= tracking_window_size: |
|
break |
|
|