|
from ..patch_match import PyramidPatchMatcher |
|
import os |
|
import numpy as np |
|
from PIL import Image |
|
from tqdm import tqdm |
|
|
|
|
|
class BalancedModeRunner: |
|
def __init__(self): |
|
pass |
|
|
|
def run(self, frames_guide, frames_style, batch_size, window_size, ebsynth_config, desc="Balanced Mode", save_path=None): |
|
patch_match_engine = PyramidPatchMatcher( |
|
image_height=frames_style[0].shape[0], |
|
image_width=frames_style[0].shape[1], |
|
channel=3, |
|
**ebsynth_config |
|
) |
|
|
|
n = len(frames_style) |
|
tasks = [] |
|
for target in range(n): |
|
for source in range(target - window_size, target + window_size + 1): |
|
if source >= 0 and source < n and source != target: |
|
tasks.append((source, target)) |
|
|
|
frames = [(None, 1) for i in range(n)] |
|
for batch_id in tqdm(range(0, len(tasks), batch_size), desc=desc): |
|
tasks_batch = tasks[batch_id: min(batch_id+batch_size, len(tasks))] |
|
source_guide = np.stack([frames_guide[source] for source, target in tasks_batch]) |
|
target_guide = np.stack([frames_guide[target] for source, target in tasks_batch]) |
|
source_style = np.stack([frames_style[source] for source, target in tasks_batch]) |
|
_, target_style = patch_match_engine.estimate_nnf(source_guide, target_guide, source_style) |
|
for (source, target), result in zip(tasks_batch, target_style): |
|
frame, weight = frames[target] |
|
if frame is None: |
|
frame = frames_style[target] |
|
frames[target] = ( |
|
frame * (weight / (weight + 1)) + result / (weight + 1), |
|
weight + 1 |
|
) |
|
if weight + 1 == min(n, target + window_size + 1) - max(0, target - window_size): |
|
frame = frame.clip(0, 255).astype("uint8") |
|
if save_path is not None: |
|
Image.fromarray(frame).save(os.path.join(save_path, "%05d.png" % target)) |
|
frames[target] = (None, 1) |
|
|