|
from ..patch_match import PyramidPatchMatcher |
|
import os |
|
import numpy as np |
|
from PIL import Image |
|
from tqdm import tqdm |
|
|
|
|
|
class AccurateModeRunner: |
|
def __init__(self): |
|
pass |
|
|
|
def run(self, frames_guide, frames_style, batch_size, window_size, ebsynth_config, desc="Accurate Mode", save_path=None): |
|
patch_match_engine = PyramidPatchMatcher( |
|
image_height=frames_style[0].shape[0], |
|
image_width=frames_style[0].shape[1], |
|
channel=3, |
|
use_mean_target_style=True, |
|
**ebsynth_config |
|
) |
|
|
|
n = len(frames_style) |
|
for target in tqdm(range(n), desc=desc): |
|
l, r = max(target - window_size, 0), min(target + window_size + 1, n) |
|
remapped_frames = [] |
|
for i in range(l, r, batch_size): |
|
j = min(i + batch_size, r) |
|
source_guide = np.stack([frames_guide[source] for source in range(i, j)]) |
|
target_guide = np.stack([frames_guide[target]] * (j - i)) |
|
source_style = np.stack([frames_style[source] for source in range(i, j)]) |
|
_, target_style = patch_match_engine.estimate_nnf(source_guide, target_guide, source_style) |
|
remapped_frames.append(target_style) |
|
frame = np.concatenate(remapped_frames, axis=0).mean(axis=0) |
|
frame = frame.clip(0, 255).astype("uint8") |
|
if save_path is not None: |
|
Image.fromarray(frame).save(os.path.join(save_path, "%05d.png" % target)) |