|
import torch, os, io |
|
import numpy as np |
|
from PIL import Image |
|
import streamlit as st |
|
st.set_page_config(layout="wide") |
|
from streamlit_drawable_canvas import st_canvas |
|
from diffsynth.models import ModelManager |
|
from diffsynth.pipelines import SDImagePipeline, SDXLImagePipeline |
|
from diffsynth.data.video import crop_and_resize |
|
|
|
|
|
config = { |
|
"Stable Diffusion": { |
|
"model_folder": "models/stable_diffusion", |
|
"pipeline_class": SDImagePipeline, |
|
"fixed_parameters": {} |
|
}, |
|
"Stable Diffusion XL": { |
|
"model_folder": "models/stable_diffusion_xl", |
|
"pipeline_class": SDXLImagePipeline, |
|
"fixed_parameters": {} |
|
}, |
|
"Stable Diffusion XL Turbo": { |
|
"model_folder": "models/stable_diffusion_xl_turbo", |
|
"pipeline_class": SDXLImagePipeline, |
|
"fixed_parameters": { |
|
"negative_prompt": "", |
|
"cfg_scale": 1.0, |
|
"num_inference_steps": 1, |
|
"height": 512, |
|
"width": 512, |
|
} |
|
} |
|
} |
|
|
|
|
|
def load_model_list(model_type): |
|
folder = config[model_type]["model_folder"] |
|
file_list = os.listdir(folder) |
|
file_list = [i for i in file_list if i.endswith(".safetensors")] |
|
file_list = sorted(file_list) |
|
return file_list |
|
|
|
|
|
def release_model(): |
|
if "model_manager" in st.session_state: |
|
st.session_state["model_manager"].to("cpu") |
|
del st.session_state["loaded_model_path"] |
|
del st.session_state["model_manager"] |
|
del st.session_state["pipeline"] |
|
torch.cuda.empty_cache() |
|
|
|
|
|
def load_model(model_type, model_path): |
|
model_manager = ModelManager() |
|
model_manager.load_model(model_path) |
|
pipeline = config[model_type]["pipeline_class"].from_model_manager(model_manager) |
|
st.session_state.loaded_model_path = model_path |
|
st.session_state.model_manager = model_manager |
|
st.session_state.pipeline = pipeline |
|
return model_manager, pipeline |
|
|
|
|
|
def use_output_image_as_input(update=True): |
|
|
|
output_image_id = 0 |
|
selected_output_image = None |
|
while True: |
|
if f"use_output_as_input_{output_image_id}" not in st.session_state: |
|
break |
|
if st.session_state[f"use_output_as_input_{output_image_id}"]: |
|
selected_output_image = st.session_state["output_images"][output_image_id] |
|
break |
|
output_image_id += 1 |
|
if update and selected_output_image is not None: |
|
st.session_state["input_image"] = selected_output_image |
|
return selected_output_image is not None |
|
|
|
|
|
def apply_stroke_to_image(stroke_image, image): |
|
image = np.array(image.convert("RGB")).astype(np.float32) |
|
height, width, _ = image.shape |
|
|
|
stroke_image = np.array(Image.fromarray(stroke_image).resize((width, height))).astype(np.float32) |
|
weight = stroke_image[:, :, -1:] / 255 |
|
stroke_image = stroke_image[:, :, :-1] |
|
|
|
image = stroke_image * weight + image * (1 - weight) |
|
image = np.clip(image, 0, 255).astype(np.uint8) |
|
image = Image.fromarray(image) |
|
return image |
|
|
|
|
|
@st.cache_data |
|
def image2bits(image): |
|
image_byte = io.BytesIO() |
|
image.save(image_byte, format="PNG") |
|
image_byte = image_byte.getvalue() |
|
return image_byte |
|
|
|
|
|
def show_output_image(image): |
|
st.image(image, use_column_width="always") |
|
st.button("Use it as input image", key=f"use_output_as_input_{image_id}") |
|
st.download_button("Download", data=image2bits(image), file_name="image.png", mime="image/png", key=f"download_output_{image_id}") |
|
|
|
|
|
column_input, column_output = st.columns(2) |
|
with st.sidebar: |
|
|
|
with st.expander("Model", expanded=True): |
|
model_type = st.selectbox("Model type", ["Stable Diffusion", "Stable Diffusion XL", "Stable Diffusion XL Turbo"]) |
|
fixed_parameters = config[model_type]["fixed_parameters"] |
|
model_path_list = ["None"] + load_model_list(model_type) |
|
model_path = st.selectbox("Model path", model_path_list) |
|
|
|
|
|
if model_path == "None": |
|
|
|
st.markdown("No models are selected.") |
|
release_model() |
|
else: |
|
|
|
model_path = os.path.join(config[model_type]["model_folder"], model_path) |
|
if st.session_state.get("loaded_model_path", "") != model_path: |
|
|
|
st.markdown(f"Using model at {model_path}.") |
|
release_model() |
|
model_manager, pipeline = load_model(model_type, model_path) |
|
else: |
|
|
|
st.markdown(f"Using model at {model_path}.") |
|
model_manager, pipeline = st.session_state.model_manager, st.session_state.pipeline |
|
|
|
|
|
with st.expander("Prompt", expanded=True): |
|
prompt = st.text_area("Positive prompt") |
|
if "negative_prompt" in fixed_parameters: |
|
negative_prompt = fixed_parameters["negative_prompt"] |
|
else: |
|
negative_prompt = st.text_area("Negative prompt") |
|
if "cfg_scale" in fixed_parameters: |
|
cfg_scale = fixed_parameters["cfg_scale"] |
|
else: |
|
cfg_scale = st.slider("Classifier-free guidance scale", min_value=1.0, max_value=10.0, value=7.5) |
|
with st.expander("Image", expanded=True): |
|
if "num_inference_steps" in fixed_parameters: |
|
num_inference_steps = fixed_parameters["num_inference_steps"] |
|
else: |
|
num_inference_steps = st.slider("Inference steps", min_value=1, max_value=100, value=20) |
|
if "height" in fixed_parameters: |
|
height = fixed_parameters["height"] |
|
else: |
|
height = st.select_slider("Height", options=[256, 512, 768, 1024, 2048], value=512) |
|
if "width" in fixed_parameters: |
|
width = fixed_parameters["width"] |
|
else: |
|
width = st.select_slider("Width", options=[256, 512, 768, 1024, 2048], value=512) |
|
num_images = st.number_input("Number of images", value=2) |
|
use_fixed_seed = st.checkbox("Use fixed seed", value=False) |
|
if use_fixed_seed: |
|
seed = st.number_input("Random seed", min_value=0, max_value=10**9, step=1, value=0) |
|
|
|
|
|
denoising_strength = 1.0 |
|
repetition = 1 |
|
|
|
|
|
|
|
with column_input: |
|
with st.expander("Input image (Optional)", expanded=True): |
|
with st.container(border=True): |
|
column_white_board, column_upload_image = st.columns([1, 2]) |
|
with column_white_board: |
|
create_white_board = st.button("Create white board") |
|
delete_input_image = st.button("Delete input image") |
|
with column_upload_image: |
|
upload_image = st.file_uploader("Upload image", type=["png", "jpg"], key="upload_image") |
|
|
|
if upload_image is not None: |
|
st.session_state["input_image"] = crop_and_resize(Image.open(upload_image), height, width) |
|
elif create_white_board: |
|
st.session_state["input_image"] = Image.fromarray(np.ones((height, width, 3), dtype=np.uint8) * 255) |
|
else: |
|
use_output_image_as_input() |
|
|
|
if delete_input_image and "input_image" in st.session_state: |
|
del st.session_state.input_image |
|
if delete_input_image and "upload_image" in st.session_state: |
|
del st.session_state.upload_image |
|
|
|
input_image = st.session_state.get("input_image", None) |
|
if input_image is not None: |
|
with st.container(border=True): |
|
column_drawing_mode, column_color_1, column_color_2 = st.columns([4, 1, 1]) |
|
with column_drawing_mode: |
|
drawing_mode = st.radio("Drawing tool", ["transform", "freedraw", "line", "rect"], horizontal=True, index=1) |
|
with column_color_1: |
|
stroke_color = st.color_picker("Stroke color") |
|
with column_color_2: |
|
fill_color = st.color_picker("Fill color") |
|
stroke_width = st.slider("Stroke width", min_value=1, max_value=50, value=10) |
|
with st.container(border=True): |
|
denoising_strength = st.slider("Denoising strength", min_value=0.0, max_value=1.0, value=0.7) |
|
repetition = st.slider("Repetition", min_value=1, max_value=8, value=1) |
|
with st.container(border=True): |
|
input_width, input_height = input_image.size |
|
canvas_result = st_canvas( |
|
fill_color=fill_color, |
|
stroke_width=stroke_width, |
|
stroke_color=stroke_color, |
|
background_color="rgba(255, 255, 255, 0)", |
|
background_image=input_image, |
|
update_streamlit=True, |
|
height=int(512 / input_width * input_height), |
|
width=512, |
|
drawing_mode=drawing_mode, |
|
key="canvas" |
|
) |
|
|
|
|
|
with column_output: |
|
run_button = st.button("Generate image", type="primary") |
|
auto_update = st.checkbox("Auto update", value=False) |
|
num_image_columns = st.slider("Columns", min_value=1, max_value=8, value=2) |
|
image_columns = st.columns(num_image_columns) |
|
|
|
|
|
if (run_button or auto_update) and model_path != "None": |
|
|
|
if input_image is not None: |
|
input_image = input_image.resize((width, height)) |
|
if canvas_result.image_data is not None: |
|
input_image = apply_stroke_to_image(canvas_result.image_data, input_image) |
|
|
|
output_images = [] |
|
for image_id in range(num_images * repetition): |
|
if use_fixed_seed: |
|
torch.manual_seed(seed + image_id) |
|
else: |
|
torch.manual_seed(np.random.randint(0, 10**9)) |
|
if image_id >= num_images: |
|
input_image = output_images[image_id - num_images] |
|
with image_columns[image_id % num_image_columns]: |
|
progress_bar_st = st.progress(0.0) |
|
image = pipeline( |
|
prompt, negative_prompt=negative_prompt, |
|
cfg_scale=cfg_scale, num_inference_steps=num_inference_steps, |
|
height=height, width=width, |
|
input_image=input_image, denoising_strength=denoising_strength, |
|
progress_bar_st=progress_bar_st |
|
) |
|
output_images.append(image) |
|
progress_bar_st.progress(1.0) |
|
show_output_image(image) |
|
st.session_state["output_images"] = output_images |
|
|
|
elif "output_images" in st.session_state: |
|
for image_id in range(len(st.session_state.output_images)): |
|
with image_columns[image_id % num_image_columns]: |
|
image = st.session_state.output_images[image_id] |
|
progress_bar = st.progress(1.0) |
|
show_output_image(image) |
|
if "upload_image" in st.session_state and use_output_image_as_input(update=False): |
|
st.markdown("If you want to use an output image as input image, please delete the uploaded image manually.") |
|
|