|
import torch |
|
from einops import rearrange, repeat |
|
|
|
|
|
class TileWorker: |
|
def __init__(self): |
|
pass |
|
|
|
|
|
def mask(self, height, width, border_width): |
|
|
|
|
|
x = torch.arange(height).repeat(width, 1).T |
|
y = torch.arange(width).repeat(height, 1) |
|
mask = torch.stack([x + 1, height - x, y + 1, width - y]).min(dim=0).values |
|
mask = (mask / border_width).clip(0, 1) |
|
return mask |
|
|
|
|
|
def tile(self, model_input, tile_size, tile_stride, tile_device, tile_dtype): |
|
|
|
batch_size, channel, _, _ = model_input.shape |
|
model_input = model_input.to(device=tile_device, dtype=tile_dtype) |
|
unfold_operator = torch.nn.Unfold( |
|
kernel_size=(tile_size, tile_size), |
|
stride=(tile_stride, tile_stride) |
|
) |
|
model_input = unfold_operator(model_input) |
|
model_input = model_input.view((batch_size, channel, tile_size, tile_size, -1)) |
|
|
|
return model_input |
|
|
|
|
|
def tiled_inference(self, forward_fn, model_input, tile_batch_size, inference_device, inference_dtype, tile_device, tile_dtype): |
|
|
|
tile_num = model_input.shape[-1] |
|
model_output_stack = [] |
|
|
|
for tile_id in range(0, tile_num, tile_batch_size): |
|
|
|
|
|
tile_id_ = min(tile_id + tile_batch_size, tile_num) |
|
x = model_input[:, :, :, :, tile_id: tile_id_] |
|
x = x.to(device=inference_device, dtype=inference_dtype) |
|
x = rearrange(x, "b c h w n -> (n b) c h w") |
|
|
|
|
|
y = forward_fn(x) |
|
y = rearrange(y, "(n b) c h w -> b c h w n", n=tile_id_-tile_id) |
|
y = y.to(device=tile_device, dtype=tile_dtype) |
|
model_output_stack.append(y) |
|
|
|
model_output = torch.concat(model_output_stack, dim=-1) |
|
return model_output |
|
|
|
|
|
def io_scale(self, model_output, tile_size): |
|
|
|
|
|
io_scale = model_output.shape[2] / tile_size |
|
return io_scale |
|
|
|
|
|
def untile(self, model_output, height, width, tile_size, tile_stride, border_width, tile_device, tile_dtype): |
|
|
|
mask = self.mask(tile_size, tile_size, border_width) |
|
mask = mask.to(device=tile_device, dtype=tile_dtype) |
|
mask = rearrange(mask, "h w -> 1 1 h w 1") |
|
model_output = model_output * mask |
|
|
|
fold_operator = torch.nn.Fold( |
|
output_size=(height, width), |
|
kernel_size=(tile_size, tile_size), |
|
stride=(tile_stride, tile_stride) |
|
) |
|
mask = repeat(mask[0, 0, :, :, 0], "h w -> 1 (h w) n", n=model_output.shape[-1]) |
|
model_output = rearrange(model_output, "b c h w n -> b (c h w) n") |
|
model_output = fold_operator(model_output) / fold_operator(mask) |
|
|
|
return model_output |
|
|
|
|
|
def tiled_forward(self, forward_fn, model_input, tile_size, tile_stride, tile_batch_size=1, tile_device="cpu", tile_dtype=torch.float32, border_width=None): |
|
|
|
inference_device, inference_dtype = model_input.device, model_input.dtype |
|
height, width = model_input.shape[2], model_input.shape[3] |
|
border_width = int(tile_stride*0.5) if border_width is None else border_width |
|
|
|
|
|
model_input = self.tile(model_input, tile_size, tile_stride, tile_device, tile_dtype) |
|
|
|
|
|
model_output = self.tiled_inference(forward_fn, model_input, tile_batch_size, inference_device, inference_dtype, tile_device, tile_dtype) |
|
|
|
|
|
io_scale = self.io_scale(model_output, tile_size) |
|
height, width = int(height*io_scale), int(width*io_scale) |
|
tile_size, tile_stride = int(tile_size*io_scale), int(tile_stride*io_scale) |
|
border_width = int(border_width*io_scale) |
|
|
|
|
|
model_output = self.untile(model_output, height, width, tile_size, tile_stride, border_width, tile_device, tile_dtype) |
|
|
|
|
|
model_output = model_output.to(device=inference_device, dtype=inference_dtype) |
|
return model_output |