DiffSynth-Studio / diffsynth /models /svd_image_encoder.py
ameerazam08's picture
Upload folder using huggingface_hub
5bf1581 verified
raw
history blame
4.25 kB
import torch
from .sd_text_encoder import CLIPEncoderLayer
class CLIPVisionEmbeddings(torch.nn.Module):
def __init__(self, embed_dim=1280, image_size=224, patch_size=14, num_channels=3):
super().__init__()
# class_embeds (This is a fixed tensor)
self.class_embedding = torch.nn.Parameter(torch.randn(1, 1, embed_dim))
# position_embeds
self.patch_embedding = torch.nn.Conv2d(in_channels=num_channels, out_channels=embed_dim, kernel_size=patch_size, stride=patch_size, bias=False)
# position_embeds (This is a fixed tensor)
self.position_embeds = torch.nn.Parameter(torch.zeros(1, (image_size // patch_size) ** 2 + 1, embed_dim))
def forward(self, pixel_values):
batch_size = pixel_values.shape[0]
patch_embeds = self.patch_embedding(pixel_values)
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.repeat(batch_size, 1, 1)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1) + self.position_embeds
return embeddings
class SVDImageEncoder(torch.nn.Module):
def __init__(self, embed_dim=1280, layer_norm_eps=1e-5, num_encoder_layers=32, encoder_intermediate_size=5120, projection_dim=1024):
super().__init__()
self.embeddings = CLIPVisionEmbeddings(embed_dim=embed_dim)
self.pre_layernorm = torch.nn.LayerNorm(embed_dim, eps=layer_norm_eps)
self.encoders = torch.nn.ModuleList([CLIPEncoderLayer(embed_dim, encoder_intermediate_size, num_heads=16, head_dim=80, use_quick_gelu=False) for _ in range(num_encoder_layers)])
self.post_layernorm = torch.nn.LayerNorm(embed_dim, eps=layer_norm_eps)
self.visual_projection = torch.nn.Linear(embed_dim, projection_dim, bias=False)
def forward(self, pixel_values):
embeds = self.embeddings(pixel_values)
embeds = self.pre_layernorm(embeds)
for encoder_id, encoder in enumerate(self.encoders):
embeds = encoder(embeds)
embeds = self.post_layernorm(embeds[:, 0, :])
embeds = self.visual_projection(embeds)
return embeds
def state_dict_converter(self):
return SVDImageEncoderStateDictConverter()
class SVDImageEncoderStateDictConverter:
def __init__(self):
pass
def from_diffusers(self, state_dict):
rename_dict = {
"vision_model.embeddings.patch_embedding.weight": "embeddings.patch_embedding.weight",
"vision_model.embeddings.class_embedding": "embeddings.class_embedding",
"vision_model.embeddings.position_embedding.weight": "embeddings.position_embeds",
"vision_model.pre_layrnorm.weight": "pre_layernorm.weight",
"vision_model.pre_layrnorm.bias": "pre_layernorm.bias",
"vision_model.post_layernorm.weight": "post_layernorm.weight",
"vision_model.post_layernorm.bias": "post_layernorm.bias",
"visual_projection.weight": "visual_projection.weight"
}
attn_rename_dict = {
"self_attn.q_proj": "attn.to_q",
"self_attn.k_proj": "attn.to_k",
"self_attn.v_proj": "attn.to_v",
"self_attn.out_proj": "attn.to_out",
"layer_norm1": "layer_norm1",
"layer_norm2": "layer_norm2",
"mlp.fc1": "fc1",
"mlp.fc2": "fc2",
}
state_dict_ = {}
for name in state_dict:
if name in rename_dict:
param = state_dict[name]
if name == "vision_model.embeddings.class_embedding":
param = state_dict[name].view(1, 1, -1)
elif name == "vision_model.embeddings.position_embedding.weight":
param = state_dict[name].view(1, 257, 1280)
state_dict_[rename_dict[name]] = param
elif name.startswith("vision_model.encoder.layers."):
param = state_dict[name]
names = name.split(".")
layer_id, layer_type, tail = names[3], ".".join(names[4:-1]), names[-1]
name_ = ".".join(["encoders", layer_id, attn_rename_dict[layer_type], tail])
state_dict_[name_] = param
return state_dict_