|
from .sd_unet import SDUNet, Attention, GEGLU |
|
import torch |
|
from einops import rearrange, repeat |
|
|
|
|
|
class TemporalTransformerBlock(torch.nn.Module): |
|
|
|
def __init__(self, dim, num_attention_heads, attention_head_dim, max_position_embeddings=32): |
|
super().__init__() |
|
|
|
|
|
self.pe1 = torch.nn.Parameter(torch.zeros(1, max_position_embeddings, dim)) |
|
self.norm1 = torch.nn.LayerNorm(dim, elementwise_affine=True) |
|
self.attn1 = Attention(q_dim=dim, num_heads=num_attention_heads, head_dim=attention_head_dim, bias_out=True) |
|
|
|
|
|
self.pe2 = torch.nn.Parameter(torch.zeros(1, max_position_embeddings, dim)) |
|
self.norm2 = torch.nn.LayerNorm(dim, elementwise_affine=True) |
|
self.attn2 = Attention(q_dim=dim, num_heads=num_attention_heads, head_dim=attention_head_dim, bias_out=True) |
|
|
|
|
|
self.norm3 = torch.nn.LayerNorm(dim, elementwise_affine=True) |
|
self.act_fn = GEGLU(dim, dim * 4) |
|
self.ff = torch.nn.Linear(dim * 4, dim) |
|
|
|
|
|
def forward(self, hidden_states, batch_size=1): |
|
|
|
|
|
norm_hidden_states = self.norm1(hidden_states) |
|
norm_hidden_states = rearrange(norm_hidden_states, "(b f) h c -> (b h) f c", b=batch_size) |
|
attn_output = self.attn1(norm_hidden_states + self.pe1[:, :norm_hidden_states.shape[1]]) |
|
attn_output = rearrange(attn_output, "(b h) f c -> (b f) h c", b=batch_size) |
|
hidden_states = attn_output + hidden_states |
|
|
|
|
|
norm_hidden_states = self.norm2(hidden_states) |
|
norm_hidden_states = rearrange(norm_hidden_states, "(b f) h c -> (b h) f c", b=batch_size) |
|
attn_output = self.attn2(norm_hidden_states + self.pe2[:, :norm_hidden_states.shape[1]]) |
|
attn_output = rearrange(attn_output, "(b h) f c -> (b f) h c", b=batch_size) |
|
hidden_states = attn_output + hidden_states |
|
|
|
|
|
norm_hidden_states = self.norm3(hidden_states) |
|
ff_output = self.act_fn(norm_hidden_states) |
|
ff_output = self.ff(ff_output) |
|
hidden_states = ff_output + hidden_states |
|
|
|
return hidden_states |
|
|
|
|
|
class TemporalBlock(torch.nn.Module): |
|
|
|
def __init__(self, num_attention_heads, attention_head_dim, in_channels, num_layers=1, norm_num_groups=32, eps=1e-5): |
|
super().__init__() |
|
inner_dim = num_attention_heads * attention_head_dim |
|
|
|
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=eps, affine=True) |
|
self.proj_in = torch.nn.Linear(in_channels, inner_dim) |
|
|
|
self.transformer_blocks = torch.nn.ModuleList([ |
|
TemporalTransformerBlock( |
|
inner_dim, |
|
num_attention_heads, |
|
attention_head_dim |
|
) |
|
for d in range(num_layers) |
|
]) |
|
|
|
self.proj_out = torch.nn.Linear(inner_dim, in_channels) |
|
|
|
def forward(self, hidden_states, time_emb, text_emb, res_stack, batch_size=1): |
|
batch, _, height, width = hidden_states.shape |
|
residual = hidden_states |
|
|
|
hidden_states = self.norm(hidden_states) |
|
inner_dim = hidden_states.shape[1] |
|
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim) |
|
hidden_states = self.proj_in(hidden_states) |
|
|
|
for block in self.transformer_blocks: |
|
hidden_states = block( |
|
hidden_states, |
|
batch_size=batch_size |
|
) |
|
|
|
hidden_states = self.proj_out(hidden_states) |
|
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous() |
|
hidden_states = hidden_states + residual |
|
|
|
return hidden_states, time_emb, text_emb, res_stack |
|
|
|
|
|
class SDMotionModel(torch.nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.motion_modules = torch.nn.ModuleList([ |
|
TemporalBlock(8, 40, 320, eps=1e-6), |
|
TemporalBlock(8, 40, 320, eps=1e-6), |
|
TemporalBlock(8, 80, 640, eps=1e-6), |
|
TemporalBlock(8, 80, 640, eps=1e-6), |
|
TemporalBlock(8, 160, 1280, eps=1e-6), |
|
TemporalBlock(8, 160, 1280, eps=1e-6), |
|
TemporalBlock(8, 160, 1280, eps=1e-6), |
|
TemporalBlock(8, 160, 1280, eps=1e-6), |
|
TemporalBlock(8, 160, 1280, eps=1e-6), |
|
TemporalBlock(8, 160, 1280, eps=1e-6), |
|
TemporalBlock(8, 160, 1280, eps=1e-6), |
|
TemporalBlock(8, 160, 1280, eps=1e-6), |
|
TemporalBlock(8, 160, 1280, eps=1e-6), |
|
TemporalBlock(8, 160, 1280, eps=1e-6), |
|
TemporalBlock(8, 160, 1280, eps=1e-6), |
|
TemporalBlock(8, 80, 640, eps=1e-6), |
|
TemporalBlock(8, 80, 640, eps=1e-6), |
|
TemporalBlock(8, 80, 640, eps=1e-6), |
|
TemporalBlock(8, 40, 320, eps=1e-6), |
|
TemporalBlock(8, 40, 320, eps=1e-6), |
|
TemporalBlock(8, 40, 320, eps=1e-6), |
|
]) |
|
self.call_block_id = { |
|
1: 0, |
|
4: 1, |
|
9: 2, |
|
12: 3, |
|
17: 4, |
|
20: 5, |
|
24: 6, |
|
26: 7, |
|
29: 8, |
|
32: 9, |
|
34: 10, |
|
36: 11, |
|
40: 12, |
|
43: 13, |
|
46: 14, |
|
50: 15, |
|
53: 16, |
|
56: 17, |
|
60: 18, |
|
63: 19, |
|
66: 20 |
|
} |
|
|
|
def forward(self): |
|
pass |
|
|
|
def state_dict_converter(self): |
|
return SDMotionModelStateDictConverter() |
|
|
|
|
|
class SDMotionModelStateDictConverter: |
|
def __init__(self): |
|
pass |
|
|
|
def from_diffusers(self, state_dict): |
|
rename_dict = { |
|
"norm": "norm", |
|
"proj_in": "proj_in", |
|
"transformer_blocks.0.attention_blocks.0.to_q": "transformer_blocks.0.attn1.to_q", |
|
"transformer_blocks.0.attention_blocks.0.to_k": "transformer_blocks.0.attn1.to_k", |
|
"transformer_blocks.0.attention_blocks.0.to_v": "transformer_blocks.0.attn1.to_v", |
|
"transformer_blocks.0.attention_blocks.0.to_out.0": "transformer_blocks.0.attn1.to_out", |
|
"transformer_blocks.0.attention_blocks.0.pos_encoder": "transformer_blocks.0.pe1", |
|
"transformer_blocks.0.attention_blocks.1.to_q": "transformer_blocks.0.attn2.to_q", |
|
"transformer_blocks.0.attention_blocks.1.to_k": "transformer_blocks.0.attn2.to_k", |
|
"transformer_blocks.0.attention_blocks.1.to_v": "transformer_blocks.0.attn2.to_v", |
|
"transformer_blocks.0.attention_blocks.1.to_out.0": "transformer_blocks.0.attn2.to_out", |
|
"transformer_blocks.0.attention_blocks.1.pos_encoder": "transformer_blocks.0.pe2", |
|
"transformer_blocks.0.norms.0": "transformer_blocks.0.norm1", |
|
"transformer_blocks.0.norms.1": "transformer_blocks.0.norm2", |
|
"transformer_blocks.0.ff.net.0.proj": "transformer_blocks.0.act_fn.proj", |
|
"transformer_blocks.0.ff.net.2": "transformer_blocks.0.ff", |
|
"transformer_blocks.0.ff_norm": "transformer_blocks.0.norm3", |
|
"proj_out": "proj_out", |
|
} |
|
name_list = sorted([i for i in state_dict if i.startswith("down_blocks.")]) |
|
name_list += sorted([i for i in state_dict if i.startswith("mid_block.")]) |
|
name_list += sorted([i for i in state_dict if i.startswith("up_blocks.")]) |
|
state_dict_ = {} |
|
last_prefix, module_id = "", -1 |
|
for name in name_list: |
|
names = name.split(".") |
|
prefix_index = names.index("temporal_transformer") + 1 |
|
prefix = ".".join(names[:prefix_index]) |
|
if prefix != last_prefix: |
|
last_prefix = prefix |
|
module_id += 1 |
|
middle_name = ".".join(names[prefix_index:-1]) |
|
suffix = names[-1] |
|
if "pos_encoder" in names: |
|
rename = ".".join(["motion_modules", str(module_id), rename_dict[middle_name]]) |
|
else: |
|
rename = ".".join(["motion_modules", str(module_id), rename_dict[middle_name], suffix]) |
|
state_dict_[rename] = state_dict[name] |
|
return state_dict_ |
|
|
|
def from_civitai(self, state_dict): |
|
return self.from_diffusers(state_dict) |
|
|