amd
/

Text-to-Image
Diffusers
ONNX
File size: 1,578 Bytes
856ede8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
base_model:
- black-forest-labs/FLUX.1-dev
pipeline_tag: text-to-image
library_name: diffusers
---

# black-forest-labs/FLUX.1-dev - AMD Optimized ONNX

## Original Model
https://huggingface.co/black-forest-labs/FLUX.1-dev

## _io32/16
_io32: model input is fp32, model will convert the input to fp16, perform ops in fp16 and write the final result in fp32

_io16: model input is fp16, perform ops in fp16 and write the final result in fp16

## Running

### 1. Using Amuse GUI Application

Use Amuse GUI application to run it: https://www.amuse-ai.com/

use _io32 model to run with Amuse application

### 2. Inference Demo

https://github.com/TensorStack-AI/OnnxStack

```
// csharp example
// Create Pipeline
var pipeline = FluxPipeline.CreatePipeline("D:\\Models\\Flux.1-dev_amdgpu");
// Prompt
var promptOptions = new PromptOptions
{
    Prompt = "a majestic Royal Bengal Tiger on the mountain top overlooking beatiful Lake Tahoe snowy mountains and deep blue lake, deep blue sky, ultra hd, 8k, photorealistic"
};
// Scheduler Options
var schedulerOptions = pipeline.DefaultSchedulerOptions with
{  
    InferenceSteps = 50,
    GuidanceScale = 3.5f,
    SchedulerType = SchedulerType.FlowMatchEulerDiscrete,
};

// Run pipeline
var result = await pipeline.GenerateImageAsync(promptOptions, schedulerOptions);

// Save Image Result
await result.SaveAsync("Result.png");
```

## Inference Result
![Intro Image](sample.png)