Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,53 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model:
|
4 |
+
- deepseek-ai/DeepSeek-R1-0528
|
5 |
+
---
|
6 |
+
|
7 |
+
|
8 |
+
# Model Overview
|
9 |
+
|
10 |
+
- **Model Architecture:** DeepSeek-R1-0528
|
11 |
+
- **Input:** Text
|
12 |
+
- **Output:** Text
|
13 |
+
- **Supported Hardware Microarchitecture:** AMD MI350/MI355
|
14 |
+
- **ROCm**: 7.0
|
15 |
+
- **Operating System(s):** Linux
|
16 |
+
- **Inference Engine:** [SGLang](https://docs.sglang.ai/)
|
17 |
+
- **Model Optimizer:** [AMD-Quark](https://quark.docs.amd.com/latest/index.html)
|
18 |
+
- **Weight quantization:** OCP MXFP4, Static
|
19 |
+
- **Activation quantization:** OCP MXFP4, Dynamic
|
20 |
+
- **Calibration Dataset:** [Pile](https://huggingface.co/datasets/mit-han-lab/pile-val-backup)
|
21 |
+
|
22 |
+
This model was built with deepseek-ai DeepSeek-R1-0528 model by applying [AMD-Quark](https://quark.docs.amd.com/latest/index.html) for MXFP4 quantization.
|
23 |
+
|
24 |
+
# Model Quantization
|
25 |
+
|
26 |
+
The model was quantized from [deepseek-ai/DeepSeek-R1-0528](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528) using [AMD-Quark](https://quark.docs.amd.com/latest/index.html). Both weights and activations were quantized to MXFP4 format.
|
27 |
+
|
28 |
+
**Preprocessing requirement:**
|
29 |
+
|
30 |
+
Before executing the quantization script below, the original FP8 model must first be dequantized to BFloat16.
|
31 |
+
You can either perform the dequantization manually using this [conversion script](https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/fp8_cast_bf16.py), or use the pre-converted BFloat16 model available at [unsloth/DeepSeek-R1-0528-BF16](https://huggingface.co/unsloth/DeepSeek-R1-0528-BF16).
|
32 |
+
|
33 |
+
**Quantization scripts:**
|
34 |
+
```
|
35 |
+
cd Quark/examples/torch/language_modeling/llm_ptq/
|
36 |
+
exclude_layers="*self_attn* *mlp.gate.* *lm_head"
|
37 |
+
python3 quantize_quark.py --model_dir $MODEL_DIR \
|
38 |
+
--quant_scheme w_mxfp4_a_mxfp4 \
|
39 |
+
--group_size 32 \
|
40 |
+
--num_calib_data 128 \
|
41 |
+
--exclude_layers $exclude_layers \
|
42 |
+
--multi_gpu \
|
43 |
+
--model_export hf_format \
|
44 |
+
--output_dir amd/DeepSeek-R1-0528-MXFP4-Preview
|
45 |
+
```
|
46 |
+
|
47 |
+
# Deployment
|
48 |
+
### Use with SGLang
|
49 |
+
|
50 |
+
This model can be deployed efficiently using the [SGLang](https://docs.sglang.ai/) backend.
|
51 |
+
|
52 |
+
# License
|
53 |
+
Modifications Copyright(c) 2025 Advanced Micro Devices, Inc. All rights reserved.
|