End of training
Browse files- .gitattributes +4 -0
- README.md +78 -0
- all_results.json +28 -0
- classification_report.csv +17 -0
- classification_report.png +3 -0
- config.json +70 -0
- eval_results.json +13 -0
- evaluation/classification_report.csv +17 -0
- evaluation/clf_bar.png +3 -0
- evaluation/confusion_matrix.csv +14 -0
- evaluation/confusion_matrix.png +3 -0
- evaluation/results.log +22 -0
- model.safetensors +3 -0
- preprocessor_config.json +22 -0
- test_results.json +12 -0
- train_and_eval.png +3 -0
- train_results.json +8 -0
- trainer_state.json +276 -0
- training_args.bin +3 -0
- training_metrics.csv +10 -0
.gitattributes
CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
classification_report.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
evaluation/clf_bar.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
evaluation/confusion_matrix.png filter=lfs diff=lfs merge=lfs -text
|
39 |
+
train_and_eval.png filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: microsoft/resnet-50
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: 2025-02-05-21-58-41-resnet-50
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# 2025-02-05-21-58-41-resnet-50
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on an unknown dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.0762
|
25 |
+
- Precision: 0.9810
|
26 |
+
- Recall: 0.9805
|
27 |
+
- F1: 0.9804
|
28 |
+
- Accuracy: 0.9766
|
29 |
+
- Top1 Accuracy: 0.9805
|
30 |
+
- Error Rate: 0.0234
|
31 |
+
|
32 |
+
## Model description
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Intended uses & limitations
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training and evaluation data
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Training procedure
|
45 |
+
|
46 |
+
### Training hyperparameters
|
47 |
+
|
48 |
+
The following hyperparameters were used during training:
|
49 |
+
- learning_rate: 0.0002
|
50 |
+
- train_batch_size: 32
|
51 |
+
- eval_batch_size: 32
|
52 |
+
- seed: 3407
|
53 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
54 |
+
- lr_scheduler_type: linear
|
55 |
+
- lr_scheduler_warmup_ratio: 0.1
|
56 |
+
- num_epochs: 10
|
57 |
+
|
58 |
+
### Training results
|
59 |
+
|
60 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Top1 Accuracy | Error Rate |
|
61 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:-------------:|:----------:|
|
62 |
+
| 2.4636 | 1.0 | 103 | 2.1548 | 0.6867 | 0.6293 | 0.5929 | 0.5824 | 0.6293 | 0.4176 |
|
63 |
+
| 1.3967 | 2.0 | 206 | 0.5586 | 0.8893 | 0.8780 | 0.8770 | 0.8743 | 0.8780 | 0.1257 |
|
64 |
+
| 0.4328 | 3.0 | 309 | 0.2100 | 0.9565 | 0.9512 | 0.9518 | 0.9524 | 0.9512 | 0.0476 |
|
65 |
+
| 0.2544 | 4.0 | 412 | 0.1414 | 0.9628 | 0.9610 | 0.9613 | 0.9588 | 0.9610 | 0.0412 |
|
66 |
+
| 0.171 | 5.0 | 515 | 0.1127 | 0.9690 | 0.9683 | 0.9683 | 0.9638 | 0.9683 | 0.0362 |
|
67 |
+
| 0.1556 | 6.0 | 618 | 0.0976 | 0.9715 | 0.9707 | 0.9706 | 0.9681 | 0.9707 | 0.0319 |
|
68 |
+
| 0.118 | 7.0 | 721 | 0.0762 | 0.9810 | 0.9805 | 0.9804 | 0.9766 | 0.9805 | 0.0234 |
|
69 |
+
| 0.1142 | 8.0 | 824 | 0.0853 | 0.9809 | 0.9805 | 0.9804 | 0.9813 | 0.9805 | 0.0187 |
|
70 |
+
| 0.0978 | 9.0 | 927 | 0.0798 | 0.9808 | 0.9805 | 0.9803 | 0.9788 | 0.9805 | 0.0212 |
|
71 |
+
|
72 |
+
|
73 |
+
### Framework versions
|
74 |
+
|
75 |
+
- Transformers 4.45.2
|
76 |
+
- Pytorch 2.5.1+cu121
|
77 |
+
- Datasets 3.2.0
|
78 |
+
- Tokenizers 0.20.3
|
all_results.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 9.0,
|
3 |
+
"eval_accuracy": 0.9765634013174265,
|
4 |
+
"eval_error_rate": 0.02343659868257353,
|
5 |
+
"eval_f1": 0.9804014205399844,
|
6 |
+
"eval_loss": 0.07615971565246582,
|
7 |
+
"eval_precision": 0.9810152386446259,
|
8 |
+
"eval_recall": 0.9804878048780488,
|
9 |
+
"eval_runtime": 8.7366,
|
10 |
+
"eval_samples_per_second": 46.929,
|
11 |
+
"eval_steps_per_second": 1.488,
|
12 |
+
"eval_top1_accuracy": 0.9804878048780488,
|
13 |
+
"test_accuracy": 0.9736256821907545,
|
14 |
+
"test_error_rate": 0.026374317809245484,
|
15 |
+
"test_f1": 0.975524936170449,
|
16 |
+
"test_loss": 0.07458387315273285,
|
17 |
+
"test_precision": 0.9770910372814001,
|
18 |
+
"test_recall": 0.975609756097561,
|
19 |
+
"test_runtime": 9.7731,
|
20 |
+
"test_samples_per_second": 41.952,
|
21 |
+
"test_steps_per_second": 1.33,
|
22 |
+
"test_top1_accuracy": 0.975609756097561,
|
23 |
+
"total_flos": 6.268961276565443e+17,
|
24 |
+
"train_loss": 0.578233896850125,
|
25 |
+
"train_runtime": 713.8479,
|
26 |
+
"train_samples_per_second": 45.906,
|
27 |
+
"train_steps_per_second": 1.443
|
28 |
+
}
|
classification_report.csv
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,precision,recall,f1-score,support
|
2 |
+
Acacia,0.9090909090909091,1.0,0.9523809523809523,30.0
|
3 |
+
Coconut,1.0,0.9444444444444444,0.9714285714285714,36.0
|
4 |
+
Dau,1.0,0.9354838709677419,0.9666666666666667,31.0
|
5 |
+
Dita,0.9512195121951219,1.0,0.975,39.0
|
6 |
+
Ilang-ilang,0.9333333333333333,1.0,0.9655172413793104,28.0
|
7 |
+
Macarthur,1.0,1.0,1.0,34.0
|
8 |
+
Mango,1.0,0.9545454545454546,0.9767441860465116,44.0
|
9 |
+
Mulawin,1.0,0.8571428571428571,0.9230769230769231,21.0
|
10 |
+
Narra,0.9333333333333333,0.9655172413793104,0.9491525423728814,29.0
|
11 |
+
Palmera,1.0,1.0,1.0,39.0
|
12 |
+
Royal Palm,1.0,1.0,1.0,24.0
|
13 |
+
Santol,1.0,1.0,1.0,29.0
|
14 |
+
Tabebuia,0.9629629629629629,1.0,0.9811320754716981,26.0
|
15 |
+
accuracy,0.975609756097561,0.975609756097561,0.975609756097561,0.975609756097561
|
16 |
+
macro avg,0.97614923468582,0.9736256821907545,0.9739307045248858,410.0
|
17 |
+
weighted avg,0.9770910372814001,0.975609756097561,0.975524936170449,410.0
|
classification_report.png
ADDED
![]() |
Git LFS Details
|
config.json
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/resnet-50",
|
3 |
+
"architectures": [
|
4 |
+
"ResNetForImageClassification"
|
5 |
+
],
|
6 |
+
"depths": [
|
7 |
+
3,
|
8 |
+
4,
|
9 |
+
6,
|
10 |
+
3
|
11 |
+
],
|
12 |
+
"downsample_in_bottleneck": false,
|
13 |
+
"downsample_in_first_stage": false,
|
14 |
+
"embedding_size": 64,
|
15 |
+
"hidden_act": "relu",
|
16 |
+
"hidden_sizes": [
|
17 |
+
256,
|
18 |
+
512,
|
19 |
+
1024,
|
20 |
+
2048
|
21 |
+
],
|
22 |
+
"id2label": {
|
23 |
+
"0": "Acacia",
|
24 |
+
"1": "Coconut",
|
25 |
+
"2": "Dau",
|
26 |
+
"3": "Dita",
|
27 |
+
"4": "Ilang-ilang",
|
28 |
+
"5": "Macarthur",
|
29 |
+
"6": "Mango",
|
30 |
+
"7": "Mulawin",
|
31 |
+
"8": "Narra",
|
32 |
+
"9": "Palmera",
|
33 |
+
"10": "Royal Palm",
|
34 |
+
"11": "Santol",
|
35 |
+
"12": "Tabebuia"
|
36 |
+
},
|
37 |
+
"label2id": {
|
38 |
+
"Acacia": 0,
|
39 |
+
"Coconut": 1,
|
40 |
+
"Dau": 2,
|
41 |
+
"Dita": 3,
|
42 |
+
"Ilang-ilang": 4,
|
43 |
+
"Macarthur": 5,
|
44 |
+
"Mango": 6,
|
45 |
+
"Mulawin": 7,
|
46 |
+
"Narra": 8,
|
47 |
+
"Palmera": 9,
|
48 |
+
"Royal Palm": 10,
|
49 |
+
"Santol": 11,
|
50 |
+
"Tabebuia": 12
|
51 |
+
},
|
52 |
+
"layer_type": "bottleneck",
|
53 |
+
"model_type": "resnet",
|
54 |
+
"num_channels": 3,
|
55 |
+
"out_features": [
|
56 |
+
"stage4"
|
57 |
+
],
|
58 |
+
"out_indices": [
|
59 |
+
4
|
60 |
+
],
|
61 |
+
"stage_names": [
|
62 |
+
"stem",
|
63 |
+
"stage1",
|
64 |
+
"stage2",
|
65 |
+
"stage3",
|
66 |
+
"stage4"
|
67 |
+
],
|
68 |
+
"torch_dtype": "float32",
|
69 |
+
"transformers_version": "4.45.2"
|
70 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 9.0,
|
3 |
+
"eval_accuracy": 0.9765634013174265,
|
4 |
+
"eval_error_rate": 0.02343659868257353,
|
5 |
+
"eval_f1": 0.9804014205399844,
|
6 |
+
"eval_loss": 0.07615971565246582,
|
7 |
+
"eval_precision": 0.9810152386446259,
|
8 |
+
"eval_recall": 0.9804878048780488,
|
9 |
+
"eval_runtime": 8.7366,
|
10 |
+
"eval_samples_per_second": 46.929,
|
11 |
+
"eval_steps_per_second": 1.488,
|
12 |
+
"eval_top1_accuracy": 0.9804878048780488
|
13 |
+
}
|
evaluation/classification_report.csv
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,precision,recall,f1-score,support
|
2 |
+
Acacia,0.9090909090909091,1.0,0.9523809523809523,30.0
|
3 |
+
Coconut,1.0,0.9444444444444444,0.9714285714285714,36.0
|
4 |
+
Dau,1.0,0.9354838709677419,0.9666666666666667,31.0
|
5 |
+
Dita,0.9512195121951219,1.0,0.975,39.0
|
6 |
+
Ilang-ilang,0.9333333333333333,1.0,0.9655172413793104,28.0
|
7 |
+
Macarthur,1.0,1.0,1.0,34.0
|
8 |
+
Mango,1.0,0.9545454545454546,0.9767441860465116,44.0
|
9 |
+
Mulawin,1.0,0.8571428571428571,0.9230769230769231,21.0
|
10 |
+
Narra,0.9333333333333333,0.9655172413793104,0.9491525423728814,29.0
|
11 |
+
Palmera,1.0,1.0,1.0,39.0
|
12 |
+
Royal Palm,1.0,1.0,1.0,24.0
|
13 |
+
Santol,1.0,1.0,1.0,29.0
|
14 |
+
Tabebuia,0.9629629629629629,1.0,0.9811320754716981,26.0
|
15 |
+
accuracy,0.975609756097561,0.975609756097561,0.975609756097561,0.975609756097561
|
16 |
+
macro avg,0.97614923468582,0.9736256821907545,0.9739307045248858,410.0
|
17 |
+
weighted avg,0.9770910372814001,0.975609756097561,0.975524936170449,410.0
|
evaluation/clf_bar.png
ADDED
![]() |
Git LFS Details
|
evaluation/confusion_matrix.csv
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,Acacia,Coconut,Dau,Dita,Ilang-ilang,Macarthur,Mango,Mulawin,Narra,Palmera,Royal Palm,Santol,Tabebuia
|
2 |
+
Acacia,30,0,0,0,0,0,0,0,0,0,0,0,0
|
3 |
+
Coconut,1,34,0,1,0,0,0,0,0,0,0,0,0
|
4 |
+
Dau,0,0,29,0,2,0,0,0,0,0,0,0,0
|
5 |
+
Dita,0,0,0,39,0,0,0,0,0,0,0,0,0
|
6 |
+
Ilang-ilang,0,0,0,0,28,0,0,0,0,0,0,0,0
|
7 |
+
Macarthur,0,0,0,0,0,34,0,0,0,0,0,0,0
|
8 |
+
Mango,0,0,0,0,0,0,42,0,2,0,0,0,0
|
9 |
+
Mulawin,2,0,0,1,0,0,0,18,0,0,0,0,0
|
10 |
+
Narra,0,0,0,0,0,0,0,0,28,0,0,0,1
|
11 |
+
Palmera,0,0,0,0,0,0,0,0,0,39,0,0,0
|
12 |
+
Royal Palm,0,0,0,0,0,0,0,0,0,0,24,0,0
|
13 |
+
Santol,0,0,0,0,0,0,0,0,0,0,0,29,0
|
14 |
+
Tabebuia,0,0,0,0,0,0,0,0,0,0,0,0,26
|
evaluation/confusion_matrix.png
ADDED
![]() |
Git LFS Details
|
evaluation/results.log
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2025-02-05 22:13:23,203 - INFO - plot_confusion_matrix - Confusion Matrix:
|
2 |
+
[[30 0 0 0 0 0 0 0 0 0 0 0 0]
|
3 |
+
[ 1 34 0 1 0 0 0 0 0 0 0 0 0]
|
4 |
+
[ 0 0 29 0 2 0 0 0 0 0 0 0 0]
|
5 |
+
[ 0 0 0 39 0 0 0 0 0 0 0 0 0]
|
6 |
+
[ 0 0 0 0 28 0 0 0 0 0 0 0 0]
|
7 |
+
[ 0 0 0 0 0 34 0 0 0 0 0 0 0]
|
8 |
+
[ 0 0 0 0 0 0 42 0 2 0 0 0 0]
|
9 |
+
[ 2 0 0 1 0 0 0 18 0 0 0 0 0]
|
10 |
+
[ 0 0 0 0 0 0 0 0 28 0 0 0 1]
|
11 |
+
[ 0 0 0 0 0 0 0 0 0 39 0 0 0]
|
12 |
+
[ 0 0 0 0 0 0 0 0 0 0 24 0 0]
|
13 |
+
[ 0 0 0 0 0 0 0 0 0 0 0 29 0]
|
14 |
+
[ 0 0 0 0 0 0 0 0 0 0 0 0 26]]
|
15 |
+
2025-02-05 22:13:23,764 - INFO - plot_confusion_matrix - Confusion matrix saved to 2025-02-05-21-58-41-resnet-50/evaluation/confusion_matrix.png
|
16 |
+
2025-02-05 22:13:23,922 - INFO - plot_confusion_matrix - Confusion matrix report saved to 2025-02-05-21-58-41-resnet-50/evaluation/confusion_matrix.csv
|
17 |
+
2025-02-05 22:13:28,873 - INFO - classification_report_bar - Classification report saved to 2025-02-05-21-58-41-resnet-50/evaluation/classification_report.csv
|
18 |
+
2025-02-05 22:13:29,374 - INFO - classification_report_bar - Classification report bar chart saved to 2025-02-05-21-58-41-resnet-50/evaluation/clf_bar.png
|
19 |
+
2025-02-05 22:13:29,375 - INFO - classification_report_bar - Overall Accuracy: 0.976
|
20 |
+
2025-02-05 22:13:32,675 - INFO - plot_classification_report_heatmap - Classification report heatmap saved to 2025-02-05-21-58-41-resnet-50/classification_report.png
|
21 |
+
2025-02-05 22:13:32,796 - INFO - plot_classification_report_heatmap - Classification report saved to 2025-02-05-21-58-41-resnet-50/classification_report.csv
|
22 |
+
2025-02-05 22:13:40,000 - INFO - plot_results - Training metrics saved to 2025-02-05-21-58-41-resnet-50/training_metrics.csv
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5292c1c7eb947a6efd76ae4eab8cbac9c75dc73a9f37c08baad88f638ea1a04c
|
3 |
+
size 94393148
|
preprocessor_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_pct": 0.875,
|
3 |
+
"do_normalize": true,
|
4 |
+
"do_rescale": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"image_mean": [
|
7 |
+
0.485,
|
8 |
+
0.456,
|
9 |
+
0.406
|
10 |
+
],
|
11 |
+
"image_processor_type": "ConvNextImageProcessor",
|
12 |
+
"image_std": [
|
13 |
+
0.229,
|
14 |
+
0.224,
|
15 |
+
0.225
|
16 |
+
],
|
17 |
+
"resample": 3,
|
18 |
+
"rescale_factor": 0.00392156862745098,
|
19 |
+
"size": {
|
20 |
+
"shortest_edge": 224
|
21 |
+
}
|
22 |
+
}
|
test_results.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"test_accuracy": 0.9736256821907545,
|
3 |
+
"test_error_rate": 0.026374317809245484,
|
4 |
+
"test_f1": 0.975524936170449,
|
5 |
+
"test_loss": 0.07458387315273285,
|
6 |
+
"test_precision": 0.9770910372814001,
|
7 |
+
"test_recall": 0.975609756097561,
|
8 |
+
"test_runtime": 9.7731,
|
9 |
+
"test_samples_per_second": 41.952,
|
10 |
+
"test_steps_per_second": 1.33,
|
11 |
+
"test_top1_accuracy": 0.975609756097561
|
12 |
+
}
|
train_and_eval.png
ADDED
![]() |
Git LFS Details
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 9.0,
|
3 |
+
"total_flos": 6.268961276565443e+17,
|
4 |
+
"train_loss": 0.578233896850125,
|
5 |
+
"train_runtime": 713.8479,
|
6 |
+
"train_samples_per_second": 45.906,
|
7 |
+
"train_steps_per_second": 1.443
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.07615971565246582,
|
3 |
+
"best_model_checkpoint": "2025-02-05-21-58-41-resnet-50/checkpoint-721",
|
4 |
+
"epoch": 9.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 927,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 1.0,
|
13 |
+
"train_accuracy": 0.28471162648764115
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"epoch": 1.0,
|
17 |
+
"grad_norm": 3.584263563156128,
|
18 |
+
"learning_rate": 0.0002,
|
19 |
+
"loss": 2.4636,
|
20 |
+
"step": 103
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 1.0,
|
24 |
+
"eval_accuracy": 0.5823726629787873,
|
25 |
+
"eval_error_rate": 0.4176273370212127,
|
26 |
+
"eval_f1": 0.5929270791957494,
|
27 |
+
"eval_loss": 2.154754877090454,
|
28 |
+
"eval_precision": 0.6866708444643892,
|
29 |
+
"eval_recall": 0.6292682926829268,
|
30 |
+
"eval_runtime": 10.0935,
|
31 |
+
"eval_samples_per_second": 40.62,
|
32 |
+
"eval_steps_per_second": 1.288,
|
33 |
+
"eval_top1_accuracy": 0.6292682926829268,
|
34 |
+
"step": 103
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"epoch": 2.0,
|
38 |
+
"train_accuracy": 0.720368863574722
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 2.0,
|
42 |
+
"grad_norm": 3.2492337226867676,
|
43 |
+
"learning_rate": 0.00017777777777777779,
|
44 |
+
"loss": 1.3967,
|
45 |
+
"step": 206
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 2.0,
|
49 |
+
"eval_accuracy": 0.8743437160779054,
|
50 |
+
"eval_error_rate": 0.1256562839220946,
|
51 |
+
"eval_f1": 0.8769823548484003,
|
52 |
+
"eval_loss": 0.5585801601409912,
|
53 |
+
"eval_precision": 0.8893317170713972,
|
54 |
+
"eval_recall": 0.8780487804878049,
|
55 |
+
"eval_runtime": 8.1523,
|
56 |
+
"eval_samples_per_second": 50.292,
|
57 |
+
"eval_steps_per_second": 1.595,
|
58 |
+
"eval_top1_accuracy": 0.8780487804878049,
|
59 |
+
"step": 206
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 3.0,
|
63 |
+
"train_accuracy": 0.8866286954163276
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 3.0,
|
67 |
+
"grad_norm": 3.393784761428833,
|
68 |
+
"learning_rate": 0.00015555555555555556,
|
69 |
+
"loss": 0.4328,
|
70 |
+
"step": 309
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"epoch": 3.0,
|
74 |
+
"eval_accuracy": 0.9524324562338874,
|
75 |
+
"eval_error_rate": 0.04756754376611261,
|
76 |
+
"eval_f1": 0.9518375743563098,
|
77 |
+
"eval_loss": 0.20998375117778778,
|
78 |
+
"eval_precision": 0.9565172518406057,
|
79 |
+
"eval_recall": 0.9512195121951219,
|
80 |
+
"eval_runtime": 8.4452,
|
81 |
+
"eval_samples_per_second": 48.548,
|
82 |
+
"eval_steps_per_second": 1.539,
|
83 |
+
"eval_top1_accuracy": 0.9512195121951219,
|
84 |
+
"step": 309
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 4.0,
|
88 |
+
"train_accuracy": 0.92324382967182
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"epoch": 4.0,
|
92 |
+
"grad_norm": 8.674211502075195,
|
93 |
+
"learning_rate": 0.00013333333333333334,
|
94 |
+
"loss": 0.2544,
|
95 |
+
"step": 412
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"epoch": 4.0,
|
99 |
+
"eval_accuracy": 0.958823798940078,
|
100 |
+
"eval_error_rate": 0.041176201059922035,
|
101 |
+
"eval_f1": 0.9612761071488952,
|
102 |
+
"eval_loss": 0.1413789838552475,
|
103 |
+
"eval_precision": 0.9627985812350435,
|
104 |
+
"eval_recall": 0.9609756097560975,
|
105 |
+
"eval_runtime": 9.5611,
|
106 |
+
"eval_samples_per_second": 42.882,
|
107 |
+
"eval_steps_per_second": 1.36,
|
108 |
+
"eval_top1_accuracy": 0.9609756097560975,
|
109 |
+
"step": 412
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"epoch": 5.0,
|
113 |
+
"train_accuracy": 0.9541632763764578
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"epoch": 5.0,
|
117 |
+
"grad_norm": 5.053682804107666,
|
118 |
+
"learning_rate": 0.00011111111111111112,
|
119 |
+
"loss": 0.171,
|
120 |
+
"step": 515
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"epoch": 5.0,
|
124 |
+
"eval_accuracy": 0.9638319094938057,
|
125 |
+
"eval_error_rate": 0.036168090506194295,
|
126 |
+
"eval_f1": 0.9682546818665395,
|
127 |
+
"eval_loss": 0.11268524825572968,
|
128 |
+
"eval_precision": 0.9690166293737246,
|
129 |
+
"eval_recall": 0.9682926829268292,
|
130 |
+
"eval_runtime": 9.0863,
|
131 |
+
"eval_samples_per_second": 45.123,
|
132 |
+
"eval_steps_per_second": 1.431,
|
133 |
+
"eval_top1_accuracy": 0.9682926829268292,
|
134 |
+
"step": 515
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 6.0,
|
138 |
+
"train_accuracy": 0.9582316246270681
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"epoch": 6.0,
|
142 |
+
"grad_norm": 5.191859245300293,
|
143 |
+
"learning_rate": 8.888888888888889e-05,
|
144 |
+
"loss": 0.1556,
|
145 |
+
"step": 618
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"epoch": 6.0,
|
149 |
+
"eval_accuracy": 0.9680975082361487,
|
150 |
+
"eval_error_rate": 0.03190249176385129,
|
151 |
+
"eval_f1": 0.9706467840988272,
|
152 |
+
"eval_loss": 0.09764808416366577,
|
153 |
+
"eval_precision": 0.9715023474110591,
|
154 |
+
"eval_recall": 0.9707317073170731,
|
155 |
+
"eval_runtime": 7.867,
|
156 |
+
"eval_samples_per_second": 52.116,
|
157 |
+
"eval_steps_per_second": 1.652,
|
158 |
+
"eval_top1_accuracy": 0.9707317073170731,
|
159 |
+
"step": 618
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 7.0,
|
163 |
+
"train_accuracy": 0.9693517765120694
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 7.0,
|
167 |
+
"grad_norm": 13.192668914794922,
|
168 |
+
"learning_rate": 6.666666666666667e-05,
|
169 |
+
"loss": 0.118,
|
170 |
+
"step": 721
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 7.0,
|
174 |
+
"eval_accuracy": 0.9765634013174265,
|
175 |
+
"eval_error_rate": 0.02343659868257353,
|
176 |
+
"eval_f1": 0.9804014205399844,
|
177 |
+
"eval_loss": 0.07615971565246582,
|
178 |
+
"eval_precision": 0.9810152386446259,
|
179 |
+
"eval_recall": 0.9804878048780488,
|
180 |
+
"eval_runtime": 10.4663,
|
181 |
+
"eval_samples_per_second": 39.173,
|
182 |
+
"eval_steps_per_second": 1.242,
|
183 |
+
"eval_top1_accuracy": 0.9804878048780488,
|
184 |
+
"step": 721
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 8.0,
|
188 |
+
"train_accuracy": 0.9712503390290209
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 8.0,
|
192 |
+
"grad_norm": 2.4042465686798096,
|
193 |
+
"learning_rate": 4.4444444444444447e-05,
|
194 |
+
"loss": 0.1142,
|
195 |
+
"step": 824
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 8.0,
|
199 |
+
"eval_accuracy": 0.9812897795903163,
|
200 |
+
"eval_error_rate": 0.01871022040968373,
|
201 |
+
"eval_f1": 0.9803571227304607,
|
202 |
+
"eval_loss": 0.08533048629760742,
|
203 |
+
"eval_precision": 0.9809065609961366,
|
204 |
+
"eval_recall": 0.9804878048780488,
|
205 |
+
"eval_runtime": 9.5505,
|
206 |
+
"eval_samples_per_second": 42.93,
|
207 |
+
"eval_steps_per_second": 1.361,
|
208 |
+
"eval_top1_accuracy": 0.9804878048780488,
|
209 |
+
"step": 824
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"epoch": 9.0,
|
213 |
+
"train_accuracy": 0.9717927854624356
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 9.0,
|
217 |
+
"grad_norm": 8.842650413513184,
|
218 |
+
"learning_rate": 2.2222222222222223e-05,
|
219 |
+
"loss": 0.0978,
|
220 |
+
"step": 927
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 9.0,
|
224 |
+
"eval_accuracy": 0.9788130896136262,
|
225 |
+
"eval_error_rate": 0.02118691038637377,
|
226 |
+
"eval_f1": 0.9803389295415358,
|
227 |
+
"eval_loss": 0.07979268580675125,
|
228 |
+
"eval_precision": 0.980763088973181,
|
229 |
+
"eval_recall": 0.9804878048780488,
|
230 |
+
"eval_runtime": 8.3701,
|
231 |
+
"eval_samples_per_second": 48.984,
|
232 |
+
"eval_steps_per_second": 1.553,
|
233 |
+
"eval_top1_accuracy": 0.9804878048780488,
|
234 |
+
"step": 927
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 9.0,
|
238 |
+
"step": 927,
|
239 |
+
"total_flos": 6.268961276565443e+17,
|
240 |
+
"train_loss": 0.578233896850125,
|
241 |
+
"train_runtime": 713.8479,
|
242 |
+
"train_samples_per_second": 45.906,
|
243 |
+
"train_steps_per_second": 1.443
|
244 |
+
}
|
245 |
+
],
|
246 |
+
"logging_steps": 500,
|
247 |
+
"max_steps": 1030,
|
248 |
+
"num_input_tokens_seen": 0,
|
249 |
+
"num_train_epochs": 10,
|
250 |
+
"save_steps": 500,
|
251 |
+
"stateful_callbacks": {
|
252 |
+
"EarlyStoppingCallback": {
|
253 |
+
"args": {
|
254 |
+
"early_stopping_patience": 2,
|
255 |
+
"early_stopping_threshold": 0.0
|
256 |
+
},
|
257 |
+
"attributes": {
|
258 |
+
"early_stopping_patience_counter": 2
|
259 |
+
}
|
260 |
+
},
|
261 |
+
"TrainerControl": {
|
262 |
+
"args": {
|
263 |
+
"should_epoch_stop": false,
|
264 |
+
"should_evaluate": false,
|
265 |
+
"should_log": false,
|
266 |
+
"should_save": true,
|
267 |
+
"should_training_stop": true
|
268 |
+
},
|
269 |
+
"attributes": {}
|
270 |
+
}
|
271 |
+
},
|
272 |
+
"total_flos": 6.268961276565443e+17,
|
273 |
+
"train_batch_size": 32,
|
274 |
+
"trial_name": null,
|
275 |
+
"trial_params": null
|
276 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:74811b4d1d753ccb9394877c84bb953b0f78c54022cd3a1792ce50e5bb5449aa
|
3 |
+
size 5176
|
training_metrics.csv
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Epoch,Train Loss,Eval Loss,Train Accuracy,Eval Accuracy
|
2 |
+
1,2.4636,2.154754877090454,0.28471162648764115,0.5823726629787873
|
3 |
+
2,1.3967,0.5585801601409912,0.720368863574722,0.8743437160779054
|
4 |
+
3,0.4328,0.20998375117778778,0.8866286954163276,0.9524324562338874
|
5 |
+
4,0.2544,0.1413789838552475,0.92324382967182,0.958823798940078
|
6 |
+
5,0.171,0.11268524825572968,0.9541632763764578,0.9638319094938057
|
7 |
+
6,0.1556,0.09764808416366577,0.9582316246270681,0.9680975082361487
|
8 |
+
7,0.118,0.07615971565246582,0.9693517765120694,0.9765634013174265
|
9 |
+
8,0.1142,0.08533048629760742,0.9712503390290209,0.9812897795903163
|
10 |
+
9,0.0978,0.07979268580675125,0.9717927854624356,0.9788130896136262
|