alyzbane commited on
Commit
61b1286
·
verified ·
1 Parent(s): 8dc27a3

Added test metrics

Browse files
classification_report.csv ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ ,precision,recall,f1-score,support
2
+ Ilang-ilang,1.0,0.9615384615384616,0.9803921568627451,26.0
3
+ Mango,0.9310344827586207,0.9,0.9152542372881356,30.0
4
+ Narra,0.875,0.9333333333333333,0.9032258064516129,30.0
5
+ Royal Palm,1.0,1.0,1.0,24.0
6
+ Tabebuia,1.0,1.0,1.0,25.0
7
+ accuracy,0.9555555555555556,0.9555555555555556,0.9555555555555556,0.9555555555555556
8
+ macro avg,0.9612068965517242,0.9589743589743589,0.9597744401204988,135.0
9
+ weighted avg,0.9568965517241378,0.9555555555555556,0.9558859065972136,135.0
classification_report.png ADDED
eval_results.json CHANGED
@@ -1,12 +1,13 @@
1
  {
2
- "test_accuracy": 0.9589743589743589,
3
- "test_error_rate": 0.0410256410256411,
4
- "test_f1": 0.9558859065972136,
5
- "test_loss": 0.1516231894493103,
6
- "test_precision": 0.9568965517241378,
7
- "test_recall": 0.9555555555555556,
8
- "test_runtime": 2.3196,
9
- "test_samples_per_second": 58.199,
10
- "test_steps_per_second": 2.156,
11
- "test_top1_accuracy": 0.9555555555555556
 
12
  }
 
1
  {
2
+ "epoch": 10.0,
3
+ "eval_accuracy": 0.9787994891443168,
4
+ "eval_error_rate": 0.021200510855683197,
5
+ "eval_f1": 0.9777978650868422,
6
+ "eval_loss": 0.12152263522148132,
7
+ "eval_precision": 0.9786106212032138,
8
+ "eval_recall": 0.9777777777777777,
9
+ "eval_runtime": 2.4415,
10
+ "eval_samples_per_second": 55.293,
11
+ "eval_steps_per_second": 2.048,
12
+ "eval_top1_accuracy": 0.9777777777777777
13
  }
evaluation.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0640525823b4979d1ee28e016a6712e306ea9fa2fafe53900031d895f87bcd90
3
+ size 323105
evaluation/classification_report.csv ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ ,precision,recall,f1-score,support
2
+ Ilang-ilang,1.0,0.9615384615384616,0.9803921568627451,26.0
3
+ Mango,0.9310344827586207,0.9,0.9152542372881356,30.0
4
+ Narra,0.875,0.9333333333333333,0.9032258064516129,30.0
5
+ Royal Palm,1.0,1.0,1.0,24.0
6
+ Tabebuia,1.0,1.0,1.0,25.0
7
+ accuracy,0.9555555555555556,0.9555555555555556,0.9555555555555556,0.9555555555555556
8
+ macro avg,0.9612068965517242,0.9589743589743589,0.9597744401204988,135.0
9
+ weighted avg,0.9568965517241378,0.9555555555555556,0.9558859065972136,135.0
evaluation/clf_bar.png ADDED
evaluation/confusion_matrix.csv ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ ,Ilang-ilang,Mango,Narra,Royal Palm,Tabebuia
2
+ Ilang-ilang,25,0,1,0,0
3
+ Mango,0,27,3,0,0
4
+ Narra,0,2,28,0,0
5
+ Royal Palm,0,0,0,24,0
6
+ Tabebuia,0,0,0,0,25
evaluation/confusion_matrix.png ADDED
evaluation/results.log ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2025-01-21 14:40:40,077 - INFO - plot_confusion_matrix - Confusion Matrix:
2
+ [[25 0 1 0 0]
3
+ [ 0 27 3 0 0]
4
+ [ 0 2 28 0 0]
5
+ [ 0 0 0 24 0]
6
+ [ 0 0 0 0 25]]
7
+ 2025-01-21 14:40:40,594 - INFO - plot_confusion_matrix - Confusion matrix saved to 2025-01-21-14-35-49-resnet-50/evaluation/confusion_matrix.png
8
+ 2025-01-21 14:40:40,599 - INFO - plot_confusion_matrix - Confusion matrix report saved to 2025-01-21-14-35-49-resnet-50/evaluation/confusion_matrix.csv
9
+ 2025-01-21 14:40:40,770 - INFO - classification_report_bar - Classification report saved to 2025-01-21-14-35-49-resnet-50/evaluation/classification_report.csv
10
+ 2025-01-21 14:40:41,529 - INFO - classification_report_bar - Classification report bar chart saved to 2025-01-21-14-35-49-resnet-50/evaluation/clf_bar.png
11
+ 2025-01-21 14:40:41,532 - INFO - classification_report_bar - Overall Accuracy: 0.956
12
+ 2025-01-21 14:40:42,287 - INFO - plot_classification_report_heatmap - Classification report heatmap saved to 2025-01-21-14-35-49-resnet-50/classification_report.png
13
+ 2025-01-21 14:40:42,462 - INFO - plot_classification_report_heatmap - Classification report saved to 2025-01-21-14-35-49-resnet-50/classification_report.csv
14
+ 2025-01-21 14:40:43,630 - INFO - plot_results - Training metrics saved to 2025-01-21-14-35-49-resnet-50/training_metrics.csv
test_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "test_accuracy": 0.9589743589743589,
3
+ "test_error_rate": 0.0410256410256411,
4
+ "test_f1": 0.9558859065972136,
5
+ "test_loss": 0.1516231894493103,
6
+ "test_precision": 0.9568965517241378,
7
+ "test_recall": 0.9555555555555556,
8
+ "test_runtime": 2.3196,
9
+ "test_samples_per_second": 58.199,
10
+ "test_steps_per_second": 2.156,
11
+ "test_top1_accuracy": 0.9555555555555556
12
+ }
train_and_eval.png ADDED
training_metrics.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Epoch,Train Loss,Eval Loss,Train Accuracy,Eval Accuracy
2
+ 1,1.5858,1.5129398107528687,0.3101851851851852,0.5417858897169242
3
+ 2,1.3909,1.1807034015655518,0.5728395061728395,0.6521766101076446
4
+ 3,1.059,0.7502983212471008,0.7555555555555555,0.8900945083014047
5
+ 4,0.6942,0.4028763771057129,0.8592592592592593,0.9427024265644957
6
+ 5,0.4241,0.23254607617855072,0.9053497942386831,0.9655172413793103
7
+ 6,0.3235,0.17022636532783508,0.9308641975308642,0.9650063856960408
8
+ 7,0.259,0.13593700528144836,0.9275720164609054,0.9719029374201789
9
+ 8,0.2231,0.12249229103326797,0.939917695473251,0.9719029374201789
10
+ 9,0.2167,0.12528401613235474,0.9423868312757202,0.9719029374201789
11
+ 10,0.1973,0.12152263522148132,0.9481481481481482,0.9787994891443168