Commit
路
56da2c8
1
Parent(s):
b4e79bd
Update README.md
Browse files
README.md
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
---
|
|
|
|
|
2 |
library_name: span-marker
|
3 |
tags:
|
4 |
- span-marker
|
@@ -10,31 +12,77 @@ metrics:
|
|
10 |
- precision
|
11 |
- recall
|
12 |
- f1
|
13 |
-
widget:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
pipeline_tag: token-classification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
---
|
16 |
|
17 |
-
# SpanMarker
|
18 |
|
19 |
-
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that can be used for Named Entity Recognition.
|
20 |
|
21 |
## Model Details
|
22 |
|
23 |
### Model Description
|
24 |
|
25 |
- **Model Type:** SpanMarker
|
26 |
-
|
27 |
- **Maximum Sequence Length:** 256 tokens
|
28 |
- **Maximum Entity Length:** 8 words
|
29 |
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
30 |
-
|
31 |
-
|
32 |
|
33 |
### Model Sources
|
34 |
|
35 |
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
|
36 |
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
## Uses
|
39 |
|
40 |
### Direct Use for Inference
|
@@ -43,9 +91,9 @@ This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that ca
|
|
43 |
from span_marker import SpanMarkerModel
|
44 |
|
45 |
# Download from the 馃 Hub
|
46 |
-
model = SpanMarkerModel.from_pretrained("
|
47 |
# Run inference
|
48 |
-
entities = model.predict("
|
49 |
```
|
50 |
|
51 |
### Downstream Use
|
@@ -57,7 +105,7 @@ You can finetune this model on your own dataset.
|
|
57 |
from span_marker import SpanMarkerModel, Trainer
|
58 |
|
59 |
# Download from the 馃 Hub
|
60 |
-
model = SpanMarkerModel.from_pretrained("
|
61 |
|
62 |
# Specify a Dataset with "tokens" and "ner_tag" columns
|
63 |
dataset = load_dataset("conll2003") # For example CoNLL2003
|
@@ -69,7 +117,7 @@ trainer = Trainer(
|
|
69 |
eval_dataset=dataset["validation"],
|
70 |
)
|
71 |
trainer.train()
|
72 |
-
trainer.save_model("
|
73 |
```
|
74 |
</details>
|
75 |
|
@@ -93,6 +141,60 @@ trainer.save_model("span_marker_model_id-finetuned")
|
|
93 |
|
94 |
## Training Details
|
95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
### Framework Versions
|
97 |
|
98 |
- Python: 3.10.12
|
|
|
1 |
---
|
2 |
+
language: es
|
3 |
+
license: cc-by-4.0
|
4 |
library_name: span-marker
|
5 |
tags:
|
6 |
- span-marker
|
|
|
12 |
- precision
|
13 |
- recall
|
14 |
- f1
|
15 |
+
widget:
|
16 |
+
- text: Por otro lado , el primer ministro portugu茅s , Antonio Guterres , presidente
|
17 |
+
de turno del Consejo Europeo , recibi贸 hoy al ministro del Interior de Colombia
|
18 |
+
, Hugo de la Calle , enviado especial del presidente de su pa铆s , Andr茅s Pastrana
|
19 |
+
.
|
20 |
+
- text: Los consejeros de la Presidencia , Gaspar Zarr铆as , de Justicia , Carmen Hermos铆n
|
21 |
+
, y de Asuntos Sociales , Isa铆as P茅rez Salda帽a , dar谩n comienzo ma帽ana a los turnos
|
22 |
+
de comparecencias de los miembros del Gobierno andaluz en el Parlamento auton贸mico
|
23 |
+
para informar de las l铆neas de actuaci贸n de sus departamentos .
|
24 |
+
- text: '( SV2147 ) PP : PROBLEMAS INTERNOS PSOE INTERFIEREN EN POLITICA DE LA JUNTA
|
25 |
+
C贸rdoba ( EFE ) .'
|
26 |
+
- text: Cuando vino a Soria , en febrero de 1998 , para sustituir al entonces destituido
|
27 |
+
Antonio G贸mez , estaba dirigiendo al Badajoz B en tercera divisi贸n y consigui贸
|
28 |
+
con el Numancia la permanencia en la 煤ltima jornada frente al H茅rcules .
|
29 |
+
- text: El ministro ecuatoriano de Defensa , Hugo Unda , asegur贸 hoy que las Fuerzas
|
30 |
+
Armadas respetar谩n la decisi贸n del Parlamento sobre la amnist铆a para los involucrados
|
31 |
+
en la asonada golpista del pasado 21 de enero , cuando fue derrocado el presidente
|
32 |
+
Jamil Mahuad .
|
33 |
pipeline_tag: token-classification
|
34 |
+
base_model: xlm-roberta-large
|
35 |
+
model-index:
|
36 |
+
- name: SpanMarker with xlm-roberta-large on conll2002
|
37 |
+
results:
|
38 |
+
- task:
|
39 |
+
type: token-classification
|
40 |
+
name: Named Entity Recognition
|
41 |
+
dataset:
|
42 |
+
name: conll2002
|
43 |
+
type: unknown
|
44 |
+
split: eval
|
45 |
+
metrics:
|
46 |
+
- type: f1
|
47 |
+
value: 0.8911398300151355
|
48 |
+
name: F1
|
49 |
+
- type: precision
|
50 |
+
value: 0.8981459751232105
|
51 |
+
name: Precision
|
52 |
+
- type: recall
|
53 |
+
value: 0.8842421441774492
|
54 |
+
name: Recall
|
55 |
---
|
56 |
|
57 |
+
# SpanMarker with xlm-roberta-large on conll2002
|
58 |
|
59 |
+
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that can be used for Named Entity Recognition. This SpanMarker model uses [xlm-roberta-large](https://huggingface.co/models/xlm-roberta-large) as the underlying encoder.
|
60 |
|
61 |
## Model Details
|
62 |
|
63 |
### Model Description
|
64 |
|
65 |
- **Model Type:** SpanMarker
|
66 |
+
- **Encoder:** [xlm-roberta-large](https://huggingface.co/models/xlm-roberta-large)
|
67 |
- **Maximum Sequence Length:** 256 tokens
|
68 |
- **Maximum Entity Length:** 8 words
|
69 |
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
70 |
+
- **Language:** es
|
71 |
+
- **License:** cc-by-4.0
|
72 |
|
73 |
### Model Sources
|
74 |
|
75 |
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
|
76 |
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
|
77 |
|
78 |
+
### Model Labels
|
79 |
+
| Label | Examples |
|
80 |
+
|:------|:------------------------------------------------------------------|
|
81 |
+
| LOC | "Melbourne", "Australia", "Victoria" |
|
82 |
+
| MISC | "CrimeNet", "Ciudad", "Ley" |
|
83 |
+
| ORG | "Commonwealth", "Tribunal Supremo", "EFE" |
|
84 |
+
| PER | "Abogado General del Estado", "Daryl Williams", "Abogado General" |
|
85 |
+
|
86 |
## Uses
|
87 |
|
88 |
### Direct Use for Inference
|
|
|
91 |
from span_marker import SpanMarkerModel
|
92 |
|
93 |
# Download from the 馃 Hub
|
94 |
+
model = SpanMarkerModel.from_pretrained("alvarobartt/span-marker-xlm-roberta-large-conll-2002-es")
|
95 |
# Run inference
|
96 |
+
entities = model.predict("( SV2147 ) PP : PROBLEMAS INTERNOS PSOE INTERFIEREN EN POLITICA DE LA JUNTA C贸rdoba ( EFE ) .")
|
97 |
```
|
98 |
|
99 |
### Downstream Use
|
|
|
105 |
from span_marker import SpanMarkerModel, Trainer
|
106 |
|
107 |
# Download from the 馃 Hub
|
108 |
+
model = SpanMarkerModel.from_pretrained("alvarobartt/span-marker-xlm-roberta-large-conll-2002-es")
|
109 |
|
110 |
# Specify a Dataset with "tokens" and "ner_tag" columns
|
111 |
dataset = load_dataset("conll2003") # For example CoNLL2003
|
|
|
117 |
eval_dataset=dataset["validation"],
|
118 |
)
|
119 |
trainer.train()
|
120 |
+
trainer.save_model("alvarobartt/span-marker-xlm-roberta-large-conll-2002-es-finetuned")
|
121 |
```
|
122 |
</details>
|
123 |
|
|
|
141 |
|
142 |
## Training Details
|
143 |
|
144 |
+
### Training Set Metrics
|
145 |
+
| Training set | Min | Median | Max |
|
146 |
+
|:----------------------|:----|:--------|:-----|
|
147 |
+
| Sentence length | 1 | 31.8052 | 1238 |
|
148 |
+
| Entities per sentence | 0 | 2.2586 | 160 |
|
149 |
+
|
150 |
+
### Training Hyperparameters
|
151 |
+
- learning_rate: 1e-05
|
152 |
+
- train_batch_size: 16
|
153 |
+
- eval_batch_size: 8
|
154 |
+
- seed: 42
|
155 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
156 |
+
- lr_scheduler_type: linear
|
157 |
+
- lr_scheduler_warmup_ratio: 0.1
|
158 |
+
- num_epochs: 2
|
159 |
+
|
160 |
+
### Training Results
|
161 |
+
| Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|
162 |
+
|:------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
|
163 |
+
| 0.0587 | 50 | 0.4612 | 0.0280 | 0.0007 | 0.0014 | 0.8576 |
|
164 |
+
| 0.1174 | 100 | 0.0512 | 0.5 | 0.0002 | 0.0005 | 0.8609 |
|
165 |
+
| 0.1761 | 150 | 0.0254 | 0.7622 | 0.5494 | 0.6386 | 0.9278 |
|
166 |
+
| 0.2347 | 200 | 0.0177 | 0.7840 | 0.7135 | 0.7471 | 0.9483 |
|
167 |
+
| 0.2934 | 250 | 0.0153 | 0.8072 | 0.7944 | 0.8007 | 0.9662 |
|
168 |
+
| 0.3521 | 300 | 0.0175 | 0.8439 | 0.7544 | 0.7966 | 0.9611 |
|
169 |
+
| 0.4108 | 350 | 0.0103 | 0.8828 | 0.8108 | 0.8452 | 0.9687 |
|
170 |
+
| 0.4695 | 400 | 0.0105 | 0.8674 | 0.8433 | 0.8552 | 0.9724 |
|
171 |
+
| 0.5282 | 450 | 0.0098 | 0.8651 | 0.8477 | 0.8563 | 0.9745 |
|
172 |
+
| 0.5869 | 500 | 0.0092 | 0.8634 | 0.8306 | 0.8467 | 0.9736 |
|
173 |
+
| 0.6455 | 550 | 0.0106 | 0.8556 | 0.8581 | 0.8568 | 0.9758 |
|
174 |
+
| 0.7042 | 600 | 0.0096 | 0.8712 | 0.8521 | 0.8616 | 0.9733 |
|
175 |
+
| 0.7629 | 650 | 0.0090 | 0.8791 | 0.8420 | 0.8601 | 0.9740 |
|
176 |
+
| 0.8216 | 700 | 0.0082 | 0.8883 | 0.8799 | 0.8840 | 0.9769 |
|
177 |
+
| 0.8803 | 750 | 0.0081 | 0.8877 | 0.8604 | 0.8739 | 0.9763 |
|
178 |
+
| 0.9390 | 800 | 0.0087 | 0.8785 | 0.8738 | 0.8762 | 0.9763 |
|
179 |
+
| 0.9977 | 850 | 0.0084 | 0.8777 | 0.8653 | 0.8714 | 0.9767 |
|
180 |
+
| 1.0563 | 900 | 0.0081 | 0.8894 | 0.8713 | 0.8803 | 0.9767 |
|
181 |
+
| 1.1150 | 950 | 0.0078 | 0.8944 | 0.8708 | 0.8825 | 0.9768 |
|
182 |
+
| 1.1737 | 1000 | 0.0079 | 0.8973 | 0.8722 | 0.8846 | 0.9776 |
|
183 |
+
| 1.2324 | 1050 | 0.0080 | 0.8792 | 0.8780 | 0.8786 | 0.9783 |
|
184 |
+
| 1.2911 | 1100 | 0.0082 | 0.8821 | 0.8574 | 0.8696 | 0.9767 |
|
185 |
+
| 1.3498 | 1150 | 0.0075 | 0.8928 | 0.8697 | 0.8811 | 0.9774 |
|
186 |
+
| 1.4085 | 1200 | 0.0076 | 0.8919 | 0.8803 | 0.8860 | 0.9792 |
|
187 |
+
| 1.4671 | 1250 | 0.0078 | 0.8846 | 0.8695 | 0.8770 | 0.9781 |
|
188 |
+
| 1.5258 | 1300 | 0.0074 | 0.8944 | 0.8845 | 0.8894 | 0.9792 |
|
189 |
+
| 1.5845 | 1350 | 0.0076 | 0.8922 | 0.8856 | 0.8889 | 0.9796 |
|
190 |
+
| 1.6432 | 1400 | 0.0072 | 0.9004 | 0.8799 | 0.8900 | 0.9790 |
|
191 |
+
| 1.7019 | 1450 | 0.0076 | 0.8944 | 0.8889 | 0.8916 | 0.9800 |
|
192 |
+
| 1.7606 | 1500 | 0.0074 | 0.8962 | 0.8861 | 0.8911 | 0.9800 |
|
193 |
+
| 1.8192 | 1550 | 0.0072 | 0.8988 | 0.8886 | 0.8937 | 0.9809 |
|
194 |
+
| 1.8779 | 1600 | 0.0074 | 0.8962 | 0.8833 | 0.8897 | 0.9797 |
|
195 |
+
| 1.9366 | 1650 | 0.0071 | 0.8976 | 0.8849 | 0.8912 | 0.9799 |
|
196 |
+
| 1.9953 | 1700 | 0.0071 | 0.8981 | 0.8842 | 0.8911 | 0.9799 |
|
197 |
+
|
198 |
### Framework Versions
|
199 |
|
200 |
- Python: 3.10.12
|