Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- neil_v00.zip +3 -0
- neil_v00/_stable_baselines3_version +1 -0
- neil_v00/data +94 -0
- neil_v00/policy.optimizer.pth +3 -0
- neil_v00/policy.pth +3 -0
- neil_v00/pytorch_variables.pth +3 -0
- neil_v00/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 271.02 +/- 9.93
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb6037b2820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb6037b28b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb6037b2940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb6037b29d0>", "_build": "<function ActorCriticPolicy._build at 0x7fb6037b2a60>", "forward": "<function ActorCriticPolicy.forward at 0x7fb6037b2af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb6037b2b80>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb6037b2c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb6037b2ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb6037b2d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb6037b2dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb6037b3210>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670411636836785324, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEbAZr6ATsw+K/HpPauWob6aCey8KoEBvAAAAAAAAAAAbc5FvlTYlLxdOwO7BSsduTBJ/z3mQhs6AACAPwAAgD+a5DQ+IQuFvD7mBTsPyEi56kn/vfEbM7oAAIA/AACAP8awVT7FGdQ85Pc5vcVpLr4tPD08X9GBPQAAAAAAAAAAMynMvCmG6D6O7zm6cki6vuC3jLuOqxo8AAAAAAAAAACtHUG+YYOovGbiBLtebVe5TCAWPnV9LjoAAIA/AACAP2aav7xXIXo/o1uLPRlAEr/Pr0+8mLaWPQAAAAAAAAAAgFGfvVJewbueqIA8/N4HPXk7H73lC+A9AACAPwAAgD9qll++3IsAvIcBFLvTgq+459pyPUIELjoAAAAAAACAP7pwJT4pPUO8YmGGug0ekjgASrC9SM2vOQAAgD8AAIA/M4A/Pk6ahbwdnSG7L4N1OTcm5b2m3Eg6AACAPwAAgD/mhbU9KSg3uswoQTNvyHcravOUuhiiu7MAAIA/AACAP2blwzyDG7c/JO0WPwzNNj5dv4i8rqQFvQAAAAAAAAAAzbJLvk5DxLyfI0k42qOdNuFeKz5iD4K3AACAPwAAgD/NghK+T64zPu/NITwj60S+qK0VvT/qID0AAAAAAAAAAIBJsz0TmpI/i0ztPis7Nb8u4Kk9FSEQPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInE8dqxSNcUCUhpRSlIwBbJRNKgGMAXSUR0CjFpwZGax5dX2UKGgGaAloD0MI6Etvf65nb0CUhpRSlGgVS/doFkdAoxd6YRdyDXV9lChoBmgJaA9DCHKo34XtiXFAlIaUUpRoFUvSaBZHQKMXeRigCfZ1fZQoaAZoCWgPQwgSUOEI0jBwQJSGlFKUaBVL4mgWR0CjF6/ustCidX2UKGgGaAloD0MIZ5jaUgdtOkCUhpRSlGgVS2poFkdAoxfFa2WpqHV9lChoBmgJaA9DCJEJ+DUS5W5AlIaUUpRoFUvyaBZHQKMYOZOzpot1fZQoaAZoCWgPQwgWpu81xLhxQJSGlFKUaBVL/mgWR0CjGIylFc6edX2UKGgGaAloD0MI4KC9+jiDcUCUhpRSlGgVS/doFkdAo0cMEC/47HV9lChoBmgJaA9DCDenkgGgE3BAlIaUUpRoFUv1aBZHQKNHEO/cnE51fZQoaAZoCWgPQwgsKAzKNKFwQJSGlFKUaBVL/mgWR0CjRxU34sVddX2UKGgGaAloD0MIxNLAj2pGc0CUhpRSlGgVS+hoFkdAo0dZ53Tuv3V9lChoBmgJaA9DCNEINq5/7G5AlIaUUpRoFUvzaBZHQKNHu0UGmk51fZQoaAZoCWgPQwj3WztR0n5yQJSGlFKUaBVNzwFoFkdAo0hYSeyzHHV9lChoBmgJaA9DCKvtJvgmW3BAlIaUUpRoFU0ZAWgWR0CjSIxbKRuCdX2UKGgGaAloD0MIYHZPHlYXcUCUhpRSlGgVS+BoFkdAo0imOdXkpHV9lChoBmgJaA9DCNnpB3WRd3BAlIaUUpRoFUv9aBZHQKNJXMmF8G91fZQoaAZoCWgPQwh3L/fJ0QZvQJSGlFKUaBVL62gWR0CjSa6cZtN0dX2UKGgGaAloD0MIhQX3A57TYUCUhpRSlGgVTegDaBZHQKNKNqVQhwF1fZQoaAZoCWgPQwiT4Xg+g09tQJSGlFKUaBVL32gWR0CjSolXA/LUdX2UKGgGaAloD0MIXp7OFWUYcUCUhpRSlGgVS+hoFkdAo0qrW07bL3V9lChoBmgJaA9DCBAIdCbt+G9AlIaUUpRoFUvvaBZHQKNKxC0F8oh1fZQoaAZoCWgPQwglQbgCCj9vQJSGlFKUaBVNHQFoFkdAo0renGbTdHV9lChoBmgJaA9DCFjiAWXTAXJAlIaUUpRoFUvraBZHQKNLBJV81Gd1fZQoaAZoCWgPQwjhJw6g35tiQJSGlFKUaBVN6ANoFkdAo0sOE0zj3nV9lChoBmgJaA9DCBhA+FAibW5AlIaUUpRoFUvraBZHQKNMCupS75F1fZQoaAZoCWgPQwhBSuzaXo5xQJSGlFKUaBVL12gWR0CjTAtjCpFTdX2UKGgGaAloD0MIEoYBSy74bkCUhpRSlGgVTaoDaBZHQKNMLe/pMYd1fZQoaAZoCWgPQwil12ZjJTBvQJSGlFKUaBVL6GgWR0CjTDNOmBOIdX2UKGgGaAloD0MIGXJsPcOWbkCUhpRSlGgVTTwBaBZHQKNMjtUGVzJ1fZQoaAZoCWgPQwgfLGNDt7lxQJSGlFKUaBVNCQFoFkdAo01WkP+XJHV9lChoBmgJaA9DCOyGbYsyTHFAlIaUUpRoFUvXaBZHQKNNXPMSsbN1fZQoaAZoCWgPQwgeM1AZ/6xGQJSGlFKUaBVL2GgWR0CjTdRVhkRSdX2UKGgGaAloD0MIk4ychT0jckCUhpRSlGgVS9xoFkdAo04XJq7AcnV9lChoBmgJaA9DCOZAD7Wtx3BAlIaUUpRoFUvTaBZHQKNOJdIoVmB1fZQoaAZoCWgPQwgB323e+BtxQJSGlFKUaBVNAQFoFkdAo05aTOgQH3V9lChoBmgJaA9DCLRZ9bka3HFAlIaUUpRoFUv8aBZHQKNOe0waisZ1fZQoaAZoCWgPQwg42QbuAChxQJSGlFKUaBVL/WgWR0CjT9Fi8WbgdX2UKGgGaAloD0MIChSxiOFzckCUhpRSlGgVS/9oFkdAo1AHz4DcM3V9lChoBmgJaA9DCAYQPpRoq3FAlIaUUpRoFU0TAWgWR0CjUFphvze5dX2UKGgGaAloD0MIb4EExc8BckCUhpRSlGgVTQABaBZHQKNQh+tr9EV1fZQoaAZoCWgPQwiLUdfau7hxQJSGlFKUaBVL3GgWR0CjUOblJYkndX2UKGgGaAloD0MI8MAAwodCc0CUhpRSlGgVS9doFkdAo1H9krf+CXV9lChoBmgJaA9DCEYjn1c8W25AlIaUUpRoFU0KAWgWR0CjUrKODJ2ddX2UKGgGaAloD0MI1sVtNED6cECUhpRSlGgVS/RoFkdAo1LCT4cm0HV9lChoBmgJaA9DCMdjBirj/zRAlIaUUpRoFUuzaBZHQKNUgeBg/kh1fZQoaAZoCWgPQwjDu1zE971xQJSGlFKUaBVL3WgWR0CjVLn93r2QdX2UKGgGaAloD0MI3jmUoarFbkCUhpRSlGgVTQMBaBZHQKNU35GjKxN1fZQoaAZoCWgPQwgMrrmjP5ZwQJSGlFKUaBVL+mgWR0CjVO/kFOfvdX2UKGgGaAloD0MIvQD76FTRbkCUhpRSlGgVS/5oFkdAo1WdWEK3NXV9lChoBmgJaA9DCCOHiJvTlHJAlIaUUpRoFU2tAWgWR0CjVbe8f3evdX2UKGgGaAloD0MImx9/adFNYECUhpRSlGgVTegDaBZHQKNV3oXbdrR1fZQoaAZoCWgPQwi+Sj52FyFlQJSGlFKUaBVN6ANoFkdAo1ZEBGQSz3V9lChoBmgJaA9DCHqKHCLuqG1AlIaUUpRoFUvnaBZHQKNWphpg1FZ1fZQoaAZoCWgPQwg6kWCqmRhtQJSGlFKUaBVL5mgWR0CjV0L61stTdX2UKGgGaAloD0MIurw5XCtDcECUhpRSlGgVS+VoFkdAo1dNKK5083V9lChoBmgJaA9DCOIftvSoEXBAlIaUUpRoFUvkaBZHQKNZPeoDPnl1fZQoaAZoCWgPQwigwDv5dClwQJSGlFKUaBVL8mgWR0CjWWaL4vexdX2UKGgGaAloD0MIIxEawYYYcUCUhpRSlGgVS+loFkdAo1ltLUTcqXV9lChoBmgJaA9DCG5OJQPAvHFAlIaUUpRoFU0OAWgWR0CjWcKYZ2pydX2UKGgGaAloD0MI0CfyJCm/cECUhpRSlGgVS+ZoFkdAo1pRIBikPHV9lChoBmgJaA9DCPJEEOehznBAlIaUUpRoFUv4aBZHQKNaa606YE51fZQoaAZoCWgPQwiP44dKo+5uQJSGlFKUaBVL8WgWR0CjWvs/6frbdX2UKGgGaAloD0MIeo1dovpVb0CUhpRSlGgVS/RoFkdAo1t544ZMtnV9lChoBmgJaA9DCBSTN8DMY1xAlIaUUpRoFU3oA2gWR0CjW4SO7xusdX2UKGgGaAloD0MIlG3gDpQycECUhpRSlGgVS/ZoFkdAo1wP6/IsAnV9lChoBmgJaA9DCOIC0Cgd6HBAlIaUUpRoFU0fAWgWR0CjXMZle4TcdX2UKGgGaAloD0MIz2vsEtXqYUCUhpRSlGgVTegDaBZHQKNc2bkOqed1fZQoaAZoCWgPQwg429yYnrBtQJSGlFKUaBVL5mgWR0CjXZLIo3JgdX2UKGgGaAloD0MIe/ZcpiYRQUCUhpRSlGgVS75oFkdAo12lDQZ4wHV9lChoBmgJaA9DCLrZHyg3gXBAlIaUUpRoFUv/aBZHQKNd22Zy+6B1fZQoaAZoCWgPQwgo1T4dD6xhQJSGlFKUaBVN6ANoFkdAo13vYHxBmnV9lChoBmgJaA9DCLsKKT+pxHBAlIaUUpRoFUvsaBZHQKNd872criF1fZQoaAZoCWgPQwjfGW1V0kVwQJSGlFKUaBVL+WgWR0CjXwNIK+i8dX2UKGgGaAloD0MIaJPDJx3+bECUhpRSlGgVS+poFkdAo18nTmW+oXV9lChoBmgJaA9DCGITmbnAMnFAlIaUUpRoFUvpaBZHQKNfKtapxWF1fZQoaAZoCWgPQwhjC0EOSu5hQJSGlFKUaBVN6ANoFkdAo19XHBDXv3V9lChoBmgJaA9DCD7NyYuMSXNAlIaUUpRoFUvfaBZHQKNfgYfGMn91fZQoaAZoCWgPQwjWcfxQaeBvQJSGlFKUaBVN1gNoFkdAo1/IH7gsLHV9lChoBmgJaA9DCCWQErs2Z3NAlIaUUpRoFUvbaBZHQKNg4RJ2+wl1fZQoaAZoCWgPQwgC1qpdE/9xQJSGlFKUaBVNIgFoFkdAo2EkQPI4l3V9lChoBmgJaA9DCJYEqKnlRnFAlIaUUpRoFUvfaBZHQKNhQq+ajN91fZQoaAZoCWgPQwjWWMLamHdvQJSGlFKUaBVNAAFoFkdAo2Fl0gbIcXV9lChoBmgJaA9DCDRmEvXC7XBAlIaUUpRoFU0CAWgWR0CjYdXD3ueCdX2UKGgGaAloD0MIXfkszwMQcUCUhpRSlGgVS9poFkdAo2KatRvWH3V9lChoBmgJaA9DCGrdBrVf6W9AlIaUUpRoFUv1aBZHQKNi6i35N491fZQoaAZoCWgPQwiDbi9pjI9yQJSGlFKUaBVL/2gWR0CjYzS1NQCTdX2UKGgGaAloD0MI/FBpxMydbECUhpRSlGgVTUQDaBZHQKNkEfeUILR1fZQoaAZoCWgPQwgoKEUr93RyQJSGlFKUaBVNGgFoFkdAo2Rg0waisXV9lChoBmgJaA9DCOrKZ3nen3BAlIaUUpRoFUvxaBZHQKNk7W7voeR1fZQoaAZoCWgPQwhuFi8WhrlwQJSGlFKUaBVL3WgWR0CjZSRwQ176dX2UKGgGaAloD0MIck7soX2icECUhpRSlGgVTQcBaBZHQKNlt2criER1fZQoaAZoCWgPQwh6+3PREMFvQJSGlFKUaBVL5WgWR0CjZbfB3zMBdX2UKGgGaAloD0MIPE7RkRxRcUCUhpRSlGgVS81oFkdAo2YFmDlHSXV9lChoBmgJaA9DCKVneomxJnFAlIaUUpRoFUvbaBZHQKNm3MajveB1fZQoaAZoCWgPQwi5pkBmZ2JtQJSGlFKUaBVNBQFoFkdAo2dF+qioKnV9lChoBmgJaA9DCKSOjqvRPXBAlIaUUpRoFUvPaBZHQKNnnPN3W4F1fZQoaAZoCWgPQwj8jAsHQs5wQJSGlFKUaBVL32gWR0CjaEYX40uUdX2UKGgGaAloD0MIwHgGDX0TckCUhpRSlGgVS9loFkdAo2i/yf+S83V9lChoBmgJaA9DCLsqUItBrXBAlIaUUpRoFUv7aBZHQKNpnkkKNQ11fZQoaAZoCWgPQwgxfERMiYtvQJSGlFKUaBVL52gWR0Cjad12zOX3dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
neil_v00.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ceb3f5520810e5659ac3969422d2ab22643b3ec0a584c56a1c5142bb90bac44
|
3 |
+
size 147061
|
neil_v00/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
neil_v00/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb6037b2820>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb6037b28b0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb6037b2940>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb6037b29d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb6037b2a60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb6037b2af0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb6037b2b80>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb6037b2c10>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb6037b2ca0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb6037b2d30>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb6037b2dc0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fb6037b3210>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1670411636836785324,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEbAZr6ATsw+K/HpPauWob6aCey8KoEBvAAAAAAAAAAAbc5FvlTYlLxdOwO7BSsduTBJ/z3mQhs6AACAPwAAgD+a5DQ+IQuFvD7mBTsPyEi56kn/vfEbM7oAAIA/AACAP8awVT7FGdQ85Pc5vcVpLr4tPD08X9GBPQAAAAAAAAAAMynMvCmG6D6O7zm6cki6vuC3jLuOqxo8AAAAAAAAAACtHUG+YYOovGbiBLtebVe5TCAWPnV9LjoAAIA/AACAP2aav7xXIXo/o1uLPRlAEr/Pr0+8mLaWPQAAAAAAAAAAgFGfvVJewbueqIA8/N4HPXk7H73lC+A9AACAPwAAgD9qll++3IsAvIcBFLvTgq+459pyPUIELjoAAAAAAACAP7pwJT4pPUO8YmGGug0ekjgASrC9SM2vOQAAgD8AAIA/M4A/Pk6ahbwdnSG7L4N1OTcm5b2m3Eg6AACAPwAAgD/mhbU9KSg3uswoQTNvyHcravOUuhiiu7MAAIA/AACAP2blwzyDG7c/JO0WPwzNNj5dv4i8rqQFvQAAAAAAAAAAzbJLvk5DxLyfI0k42qOdNuFeKz5iD4K3AACAPwAAgD/NghK+T64zPu/NITwj60S+qK0VvT/qID0AAAAAAAAAAIBJsz0TmpI/i0ztPis7Nb8u4Kk9FSEQPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVPBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInE8dqxSNcUCUhpRSlIwBbJRNKgGMAXSUR0CjFpwZGax5dX2UKGgGaAloD0MI6Etvf65nb0CUhpRSlGgVS/doFkdAoxd6YRdyDXV9lChoBmgJaA9DCHKo34XtiXFAlIaUUpRoFUvSaBZHQKMXeRigCfZ1fZQoaAZoCWgPQwgSUOEI0jBwQJSGlFKUaBVL4mgWR0CjF6/ustCidX2UKGgGaAloD0MIZ5jaUgdtOkCUhpRSlGgVS2poFkdAoxfFa2WpqHV9lChoBmgJaA9DCJEJ+DUS5W5AlIaUUpRoFUvyaBZHQKMYOZOzpot1fZQoaAZoCWgPQwgWpu81xLhxQJSGlFKUaBVL/mgWR0CjGIylFc6edX2UKGgGaAloD0MI4KC9+jiDcUCUhpRSlGgVS/doFkdAo0cMEC/47HV9lChoBmgJaA9DCDenkgGgE3BAlIaUUpRoFUv1aBZHQKNHEO/cnE51fZQoaAZoCWgPQwgsKAzKNKFwQJSGlFKUaBVL/mgWR0CjRxU34sVddX2UKGgGaAloD0MIxNLAj2pGc0CUhpRSlGgVS+hoFkdAo0dZ53Tuv3V9lChoBmgJaA9DCNEINq5/7G5AlIaUUpRoFUvzaBZHQKNHu0UGmk51fZQoaAZoCWgPQwj3WztR0n5yQJSGlFKUaBVNzwFoFkdAo0hYSeyzHHV9lChoBmgJaA9DCKvtJvgmW3BAlIaUUpRoFU0ZAWgWR0CjSIxbKRuCdX2UKGgGaAloD0MIYHZPHlYXcUCUhpRSlGgVS+BoFkdAo0imOdXkpHV9lChoBmgJaA9DCNnpB3WRd3BAlIaUUpRoFUv9aBZHQKNJXMmF8G91fZQoaAZoCWgPQwh3L/fJ0QZvQJSGlFKUaBVL62gWR0CjSa6cZtN0dX2UKGgGaAloD0MIhQX3A57TYUCUhpRSlGgVTegDaBZHQKNKNqVQhwF1fZQoaAZoCWgPQwiT4Xg+g09tQJSGlFKUaBVL32gWR0CjSolXA/LUdX2UKGgGaAloD0MIXp7OFWUYcUCUhpRSlGgVS+hoFkdAo0qrW07bL3V9lChoBmgJaA9DCBAIdCbt+G9AlIaUUpRoFUvvaBZHQKNKxC0F8oh1fZQoaAZoCWgPQwglQbgCCj9vQJSGlFKUaBVNHQFoFkdAo0renGbTdHV9lChoBmgJaA9DCFjiAWXTAXJAlIaUUpRoFUvraBZHQKNLBJV81Gd1fZQoaAZoCWgPQwjhJw6g35tiQJSGlFKUaBVN6ANoFkdAo0sOE0zj3nV9lChoBmgJaA9DCBhA+FAibW5AlIaUUpRoFUvraBZHQKNMCupS75F1fZQoaAZoCWgPQwhBSuzaXo5xQJSGlFKUaBVL12gWR0CjTAtjCpFTdX2UKGgGaAloD0MIEoYBSy74bkCUhpRSlGgVTaoDaBZHQKNMLe/pMYd1fZQoaAZoCWgPQwil12ZjJTBvQJSGlFKUaBVL6GgWR0CjTDNOmBOIdX2UKGgGaAloD0MIGXJsPcOWbkCUhpRSlGgVTTwBaBZHQKNMjtUGVzJ1fZQoaAZoCWgPQwgfLGNDt7lxQJSGlFKUaBVNCQFoFkdAo01WkP+XJHV9lChoBmgJaA9DCOyGbYsyTHFAlIaUUpRoFUvXaBZHQKNNXPMSsbN1fZQoaAZoCWgPQwgeM1AZ/6xGQJSGlFKUaBVL2GgWR0CjTdRVhkRSdX2UKGgGaAloD0MIk4ychT0jckCUhpRSlGgVS9xoFkdAo04XJq7AcnV9lChoBmgJaA9DCOZAD7Wtx3BAlIaUUpRoFUvTaBZHQKNOJdIoVmB1fZQoaAZoCWgPQwgB323e+BtxQJSGlFKUaBVNAQFoFkdAo05aTOgQH3V9lChoBmgJaA9DCLRZ9bka3HFAlIaUUpRoFUv8aBZHQKNOe0waisZ1fZQoaAZoCWgPQwg42QbuAChxQJSGlFKUaBVL/WgWR0CjT9Fi8WbgdX2UKGgGaAloD0MIChSxiOFzckCUhpRSlGgVS/9oFkdAo1AHz4DcM3V9lChoBmgJaA9DCAYQPpRoq3FAlIaUUpRoFU0TAWgWR0CjUFphvze5dX2UKGgGaAloD0MIb4EExc8BckCUhpRSlGgVTQABaBZHQKNQh+tr9EV1fZQoaAZoCWgPQwiLUdfau7hxQJSGlFKUaBVL3GgWR0CjUOblJYkndX2UKGgGaAloD0MI8MAAwodCc0CUhpRSlGgVS9doFkdAo1H9krf+CXV9lChoBmgJaA9DCEYjn1c8W25AlIaUUpRoFU0KAWgWR0CjUrKODJ2ddX2UKGgGaAloD0MI1sVtNED6cECUhpRSlGgVS/RoFkdAo1LCT4cm0HV9lChoBmgJaA9DCMdjBirj/zRAlIaUUpRoFUuzaBZHQKNUgeBg/kh1fZQoaAZoCWgPQwjDu1zE971xQJSGlFKUaBVL3WgWR0CjVLn93r2QdX2UKGgGaAloD0MI3jmUoarFbkCUhpRSlGgVTQMBaBZHQKNU35GjKxN1fZQoaAZoCWgPQwgMrrmjP5ZwQJSGlFKUaBVL+mgWR0CjVO/kFOfvdX2UKGgGaAloD0MIvQD76FTRbkCUhpRSlGgVS/5oFkdAo1WdWEK3NXV9lChoBmgJaA9DCCOHiJvTlHJAlIaUUpRoFU2tAWgWR0CjVbe8f3evdX2UKGgGaAloD0MImx9/adFNYECUhpRSlGgVTegDaBZHQKNV3oXbdrR1fZQoaAZoCWgPQwi+Sj52FyFlQJSGlFKUaBVN6ANoFkdAo1ZEBGQSz3V9lChoBmgJaA9DCHqKHCLuqG1AlIaUUpRoFUvnaBZHQKNWphpg1FZ1fZQoaAZoCWgPQwg6kWCqmRhtQJSGlFKUaBVL5mgWR0CjV0L61stTdX2UKGgGaAloD0MIurw5XCtDcECUhpRSlGgVS+VoFkdAo1dNKK5083V9lChoBmgJaA9DCOIftvSoEXBAlIaUUpRoFUvkaBZHQKNZPeoDPnl1fZQoaAZoCWgPQwigwDv5dClwQJSGlFKUaBVL8mgWR0CjWWaL4vexdX2UKGgGaAloD0MIIxEawYYYcUCUhpRSlGgVS+loFkdAo1ltLUTcqXV9lChoBmgJaA9DCG5OJQPAvHFAlIaUUpRoFU0OAWgWR0CjWcKYZ2pydX2UKGgGaAloD0MI0CfyJCm/cECUhpRSlGgVS+ZoFkdAo1pRIBikPHV9lChoBmgJaA9DCPJEEOehznBAlIaUUpRoFUv4aBZHQKNaa606YE51fZQoaAZoCWgPQwiP44dKo+5uQJSGlFKUaBVL8WgWR0CjWvs/6frbdX2UKGgGaAloD0MIeo1dovpVb0CUhpRSlGgVS/RoFkdAo1t544ZMtnV9lChoBmgJaA9DCBSTN8DMY1xAlIaUUpRoFU3oA2gWR0CjW4SO7xusdX2UKGgGaAloD0MIlG3gDpQycECUhpRSlGgVS/ZoFkdAo1wP6/IsAnV9lChoBmgJaA9DCOIC0Cgd6HBAlIaUUpRoFU0fAWgWR0CjXMZle4TcdX2UKGgGaAloD0MIz2vsEtXqYUCUhpRSlGgVTegDaBZHQKNc2bkOqed1fZQoaAZoCWgPQwg429yYnrBtQJSGlFKUaBVL5mgWR0CjXZLIo3JgdX2UKGgGaAloD0MIe/ZcpiYRQUCUhpRSlGgVS75oFkdAo12lDQZ4wHV9lChoBmgJaA9DCLrZHyg3gXBAlIaUUpRoFUv/aBZHQKNd22Zy+6B1fZQoaAZoCWgPQwgo1T4dD6xhQJSGlFKUaBVN6ANoFkdAo13vYHxBmnV9lChoBmgJaA9DCLsKKT+pxHBAlIaUUpRoFUvsaBZHQKNd872criF1fZQoaAZoCWgPQwjfGW1V0kVwQJSGlFKUaBVL+WgWR0CjXwNIK+i8dX2UKGgGaAloD0MIaJPDJx3+bECUhpRSlGgVS+poFkdAo18nTmW+oXV9lChoBmgJaA9DCGITmbnAMnFAlIaUUpRoFUvpaBZHQKNfKtapxWF1fZQoaAZoCWgPQwhjC0EOSu5hQJSGlFKUaBVN6ANoFkdAo19XHBDXv3V9lChoBmgJaA9DCD7NyYuMSXNAlIaUUpRoFUvfaBZHQKNfgYfGMn91fZQoaAZoCWgPQwjWcfxQaeBvQJSGlFKUaBVN1gNoFkdAo1/IH7gsLHV9lChoBmgJaA9DCCWQErs2Z3NAlIaUUpRoFUvbaBZHQKNg4RJ2+wl1fZQoaAZoCWgPQwgC1qpdE/9xQJSGlFKUaBVNIgFoFkdAo2EkQPI4l3V9lChoBmgJaA9DCJYEqKnlRnFAlIaUUpRoFUvfaBZHQKNhQq+ajN91fZQoaAZoCWgPQwjWWMLamHdvQJSGlFKUaBVNAAFoFkdAo2Fl0gbIcXV9lChoBmgJaA9DCDRmEvXC7XBAlIaUUpRoFU0CAWgWR0CjYdXD3ueCdX2UKGgGaAloD0MIXfkszwMQcUCUhpRSlGgVS9poFkdAo2KatRvWH3V9lChoBmgJaA9DCGrdBrVf6W9AlIaUUpRoFUv1aBZHQKNi6i35N491fZQoaAZoCWgPQwiDbi9pjI9yQJSGlFKUaBVL/2gWR0CjYzS1NQCTdX2UKGgGaAloD0MI/FBpxMydbECUhpRSlGgVTUQDaBZHQKNkEfeUILR1fZQoaAZoCWgPQwgoKEUr93RyQJSGlFKUaBVNGgFoFkdAo2Rg0waisXV9lChoBmgJaA9DCOrKZ3nen3BAlIaUUpRoFUvxaBZHQKNk7W7voeR1fZQoaAZoCWgPQwhuFi8WhrlwQJSGlFKUaBVL3WgWR0CjZSRwQ176dX2UKGgGaAloD0MIck7soX2icECUhpRSlGgVTQcBaBZHQKNlt2criER1fZQoaAZoCWgPQwh6+3PREMFvQJSGlFKUaBVL5WgWR0CjZbfB3zMBdX2UKGgGaAloD0MIPE7RkRxRcUCUhpRSlGgVS81oFkdAo2YFmDlHSXV9lChoBmgJaA9DCKVneomxJnFAlIaUUpRoFUvbaBZHQKNm3MajveB1fZQoaAZoCWgPQwi5pkBmZ2JtQJSGlFKUaBVNBQFoFkdAo2dF+qioKnV9lChoBmgJaA9DCKSOjqvRPXBAlIaUUpRoFUvPaBZHQKNnnPN3W4F1fZQoaAZoCWgPQwj8jAsHQs5wQJSGlFKUaBVL32gWR0CjaEYX40uUdX2UKGgGaAloD0MIwHgGDX0TckCUhpRSlGgVS9loFkdAo2i/yf+S83V9lChoBmgJaA9DCLsqUItBrXBAlIaUUpRoFUv7aBZHQKNpnkkKNQ11fZQoaAZoCWgPQwgxfERMiYtvQJSGlFKUaBVL52gWR0Cjad12zOX3dWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 310,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
neil_v00/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8cecca507e886b976c32f4a188e19a7e20f681037735c76b9c3f47166b39b84e
|
3 |
+
size 87865
|
neil_v00/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:35559942ad1ee22d80f5321389255dc3e2bf8efd341d3401b89a85292e18f511
|
3 |
+
size 43201
|
neil_v00/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
neil_v00/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.15
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (237 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 271.0151035913088, "std_reward": 9.934084194289067, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-07T11:41:37.036283"}
|