Commit
·
35e34e6
1
Parent(s):
b34a7b1
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 252.04 +/- 67.42
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f12ce6045e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f12ce604670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f12ce604700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f12ce604790>", "_build": "<function ActorCriticPolicy._build at 0x7f12ce604820>", "forward": "<function ActorCriticPolicy.forward at 0x7f12ce6048b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f12ce604940>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f12ce6049d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f12ce604a60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f12ce604af0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f12ce604b80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f12ce604c10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f12ce608440>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687826240795884340, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADPC1T03WXM+00aIvvaSob4pPqO9pfkoPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEYd1U2kzqMAWyUS9yMAXSUR0CUKO08/2TQdX2UKGgGR0BxnGvdM0xeaAdNEgFoCEdAlCpUulGgBnV9lChoBkdAT0m6/Zdv9GgHS7toCEdAlCz64pc5bXV9lChoBkdARXkvf0mMO2gHS7hoCEdAlC3ddeIEbHV9lChoBkdAcKk9q1w5vWgHS99oCEdAlC6rBfrrxHV9lChoBkdAcUKrFwT/Q2gHTQYBaAhHQJQvnQD3dsV1fZQoaAZHQHFJM2vStvJoB0vWaAhHQJQwaQvHtF91fZQoaAZHQHLrrxRVIZtoB00PAWgIR0CUMmzQeFL4dX2UKGgGR0BvOn+bVjI8aAdL5WgIR0CUM0VhCtzTdX2UKGgGR0BwON9v0h/zaAdNAQFoCEdAlDQ3tKIznHV9lChoBkdASU4tL+PzWmgHS7hoCEdAlDTlXq7iAHV9lChoBkdAcDEnO0LMLWgHS95oCEdAlDazwH7gsXV9lChoBkdAcFGLVFx4p2gHS/1oCEdAlDemnO0LMXV9lChoBkdAcam371qWT2gHS99oCEdAlDh18kUsWnV9lChoBkdAcuNjZcs19GgHS+1oCEdAlDlQrQPZqXV9lChoBkdAcHyRTjvNNmgHS+xoCEdAlDo0DhcZ+HV9lChoBkdAc3jyXlbNbGgHS9poCEdAlDwF1B+nZXV9lChoBkdAcu0JGvwEyWgHTRkBaAhHQJQ9D4zrNW51fZQoaAZHQHL7m9YfW+ZoB00UAWgIR0CUPhCGvfTDdX2UKGgGR0A+WKOT7l7uaAdLnmgIR0CUPp2L5ylvdX2UKGgGR0BxwoNPP9k0aAdL+mgIR0CUQId4mkWRdX2UKGgGR0ByBRvNu+AVaAdL9mgIR0CUQW2rGR3edX2UKGgGR0Bw2wrmQr+YaAdL52gIR0CUQkmm+CbudX2UKGgGR0BzJTPHDJlraAdNAwFoCEdAlEM6Dwpe/3V9lChoBkdAcNnXyy2QXGgHS95oCEdAlEUM+RoysXV9lChoBkdAcf5XIEKVp2gHS+FoCEdAlEXh3NcGDHV9lChoBkdAZV9KVY6nzmgHTegDaAhHQJRKm+bmU4d1fZQoaAZHQFONXz19ORFoB0uSaAhHQJRLJsdkrgB1fZQoaAZHQFMU2mpEQXhoB0uhaAhHQJRLvWkJrtV1fZQoaAZHQHGd0p7TlT5oB00BAWgIR0CUTK9If8uSdX2UKGgGR0BxCtB5X2dvaAdL/WgIR0CUTql0HQhPdX2UKGgGR0BxqcaisXBQaAdL4WgIR0CUT3uCf6GhdX2UKGgGR0ByD+xTsIE9aAdL92gIR0CUUGTXarWAdX2UKGgGR0BkEEvf0mMPaAdN6ANoCEdAlFUwyhzvJHV9lChoBkdAbi2Btk4FR2gHS/JoCEdAlFYzYukDZHV9lChoBkdAUTlItlI3BGgHS4RoCEdAlFbVUyYXwnV9lChoBkdAcbfQ4jrzG2gHS+xoCEdAlFl8C9ytFXV9lChoBkdAcXqE7W/ag2gHTQEBaAhHQJRathx5s0p1fZQoaAZHQCMJb2USqVBoB0unaAhHQJRbgzxgAp91fZQoaAZHQHILtj0+TvBoB00KAWgIR0CUXM7mMfihdX2UKGgGR0BQfuiN83MqaAdLmWgIR0CUXYSGahHtdX2UKGgGR0BxfxElVtGeaAdL9mgIR0CUYDs5GSZCdX2UKGgGR0BwrBS9/SYxaAdNGgFoCEdAlGG2kSElFHV9lChoBkdAbkRF8XvYvmgHS/JoCEdAlGL6lDWsinV9lChoBkdASVrHOryUcGgHS55oCEdAlGPRGpda+3V9lChoBkdAQmZGMGX5WWgHS7JoCEdAlGZZKjBVMnV9lChoBkdAck8pDu0CzWgHTQwBaAhHQJRntxaPjn51fZQoaAZHQHBGjqbBoEloB0viaAhHQJRo5kpZwGZ1fZQoaAZHQHCBN/WlMytoB0vraAhHQJRqG99MK1J1fZQoaAZHQHFxAMDwH7hoB00OAWgIR0CUa4S619fDdX2UKGgGR0ByaK89Oh0yaAdL0WgIR0CUbcNGViWndX2UKGgGR0ByfNwLmZE2aAdL6GgIR0CUbpv8qFyrdX2UKGgGR0BwbqvIOpbVaAdNCAFoCEdAlG+g+dK/VXV9lChoBkdAciAqnFYMfGgHS/1oCEdAlHCI3FUADXV9lChoBkdAcU19Wp6yB2gHS+RoCEdAlHJu/gzguXV9lChoBkdAbabJ2dNFjWgHS/9oCEdAlHNccZLqU3V9lChoBkdAcvZnanJkoWgHS+VoCEdAlHQ0lAu7H3V9lChoBkdATTOLzf779GgHS8ZoCEdAlHTtmUW2w3V9lChoBkdAb9TWZJCjUWgHS+VoCEdAlHbCwKSgXnV9lChoBkdAUulqBVdX1mgHS7NoCEdAlHdzwUg0THV9lChoBkdAcuhtnf2saWgHS+BoCEdAlHhHtWuHOHV9lChoBkdAQxt9nbqQimgHS6hoCEdAlHjpoTPBznV9lChoBkdAcKh9P1tfomgHS+toCEdAlHm8+u/1x3V9lChoBkdAQadUEPlMiGgHS3toCEdAlHor4agmJHV9lChoBkdAcar9KmKqGWgHS/xoCEdAlHwhKUVzqHV9lChoBkdATl/IIWxhUmgHS6JoCEdAlHy1abF0gnV9lChoBkdAc3LzgMtsemgHS8JoCEdAlH1rOAy2yHV9lChoBkdAcu0f+0gKW2gHTQoBaAhHQJR+ZTZQHiZ1fZQoaAZHQHKZcj3VTaVoB00LAWgIR0CUgHd9Ujs2dX2UKGgGR0BxosUBXCCSaAdL8WgIR0CUgV+lTFVDdX2UKGgGR0ByMxUCJXQuaAdL8mgIR0CUgkCAMDwIdX2UKGgGR0BvTdygf2boaAdL2mgIR0CUgwhky1u0dX2UKGgGR0BQHal+EytWaAdLlWgIR0CUg5wiJO32dX2UKGgGR0Bvkh/RVp9JaAdL5GgIR0CUhXPUrkKedX2UKGgGR0BylUvexfOVaAdNDwFoCEdAlIZv6oESunV9lChoBkdAcPT8w5/9YWgHS+5oCEdAlIdSTt9hJHV9lChoBkdAcHVj1PFefWgHTQ0BaAhHQJSITUmUnoh1fZQoaAZHQEN6tMfzSThoB0u0aAhHQJSJ951Ng0F1fZQoaAZHQHHwHQdCE6FoB0v9aAhHQJSK3/HYHxB1fZQoaAZHQHBYeV9nbqRoB0v6aAhHQJSLzOzIFNd1fZQoaAZHQHHCFjqfOD9oB01PAWgIR0CUjQkleF+NdX2UKGgGR0BQ+Xqmj0tiaAdLo2gIR0CUjp+fAbhndX2UKGgGR0BwnHWH1vl2aAdL92gIR0CUj4rVe8f3dX2UKGgGR0BwpUk7fYSQaAdLzmgIR0CUkEuKXOW0dX2UKGgGR0BBLhAnlXA/aAdLuWgIR0CUkPw5vLowdX2UKGgGR0BwYqFJxvNvaAdNPwFoCEdAlJIeYQarFXV9lChoBkdAScmKbayrxWgHS7doCEdAlJPT0xubZ3V9lChoBkdAcKPSiM5wO2gHS9loCEdAlJSfYao/A3V9lChoBkdAcAD/echC+mgHS+RoCEdAlJW1gYxcmnV9lChoBkdAcIhv4dp7C2gHS/doCEdAlJblpwjt5XV9lChoBkdAULFVea8Yh2gHS8JoCEdAlJlGG21D0HV9lChoBkdAcZtejmCAc2gHTRcBaAhHQJSamRvFWGR1fZQoaAZHQE7ub1AZ88doB0uvaAhHQJSbarn1WbR1fZQoaAZHQGNW5gG8mKJoB03oA2gIR0CUoj4+r2g4dX2UKGgGR0BxBEkTpPhyaAdNDAFoCEdAlKOpQpF1CHV9lChoBkdAcfXTwUg0TGgHS/VoCEdAlKTw6dUbUHV9lChoBkdAcnQs/IKc/mgHS9toCEdAlKerjDKoynV9lChoBkdAciLr7fpD/mgHS/VoCEdAlKj3y3CsO3V9lChoBkdAcJ6d9Ujs2WgHTRUBaAhHQJSqaowVTJh1fZQoaAZHQG98pLuhK15oB0vhaAhHQJSrjhKlHjJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:62d1ea23c896b3b69c0903e701f8a5a7f0461c7cfb58b46efd2e1652e88ca7ad
|
3 |
+
size 145490
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f12ce6045e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f12ce604670>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f12ce604700>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f12ce604790>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f12ce604820>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f12ce6048b0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f12ce604940>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f12ce6049d0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f12ce604a60>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f12ce604af0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f12ce604b80>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f12ce604c10>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f12ce608440>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1000448,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1687826240795884340,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADPC1T03WXM+00aIvvaSob4pPqO9pfkoPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.00044800000000000395,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV+gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEYd1U2kzqMAWyUS9yMAXSUR0CUKO08/2TQdX2UKGgGR0BxnGvdM0xeaAdNEgFoCEdAlCpUulGgBnV9lChoBkdAT0m6/Zdv9GgHS7toCEdAlCz64pc5bXV9lChoBkdARXkvf0mMO2gHS7hoCEdAlC3ddeIEbHV9lChoBkdAcKk9q1w5vWgHS99oCEdAlC6rBfrrxHV9lChoBkdAcUKrFwT/Q2gHTQYBaAhHQJQvnQD3dsV1fZQoaAZHQHFJM2vStvJoB0vWaAhHQJQwaQvHtF91fZQoaAZHQHLrrxRVIZtoB00PAWgIR0CUMmzQeFL4dX2UKGgGR0BvOn+bVjI8aAdL5WgIR0CUM0VhCtzTdX2UKGgGR0BwON9v0h/zaAdNAQFoCEdAlDQ3tKIznHV9lChoBkdASU4tL+PzWmgHS7hoCEdAlDTlXq7iAHV9lChoBkdAcDEnO0LMLWgHS95oCEdAlDazwH7gsXV9lChoBkdAcFGLVFx4p2gHS/1oCEdAlDemnO0LMXV9lChoBkdAcam371qWT2gHS99oCEdAlDh18kUsWnV9lChoBkdAcuNjZcs19GgHS+1oCEdAlDlQrQPZqXV9lChoBkdAcHyRTjvNNmgHS+xoCEdAlDo0DhcZ+HV9lChoBkdAc3jyXlbNbGgHS9poCEdAlDwF1B+nZXV9lChoBkdAcu0JGvwEyWgHTRkBaAhHQJQ9D4zrNW51fZQoaAZHQHL7m9YfW+ZoB00UAWgIR0CUPhCGvfTDdX2UKGgGR0A+WKOT7l7uaAdLnmgIR0CUPp2L5ylvdX2UKGgGR0BxwoNPP9k0aAdL+mgIR0CUQId4mkWRdX2UKGgGR0ByBRvNu+AVaAdL9mgIR0CUQW2rGR3edX2UKGgGR0Bw2wrmQr+YaAdL52gIR0CUQkmm+CbudX2UKGgGR0BzJTPHDJlraAdNAwFoCEdAlEM6Dwpe/3V9lChoBkdAcNnXyy2QXGgHS95oCEdAlEUM+RoysXV9lChoBkdAcf5XIEKVp2gHS+FoCEdAlEXh3NcGDHV9lChoBkdAZV9KVY6nzmgHTegDaAhHQJRKm+bmU4d1fZQoaAZHQFONXz19ORFoB0uSaAhHQJRLJsdkrgB1fZQoaAZHQFMU2mpEQXhoB0uhaAhHQJRLvWkJrtV1fZQoaAZHQHGd0p7TlT5oB00BAWgIR0CUTK9If8uSdX2UKGgGR0BxCtB5X2dvaAdL/WgIR0CUTql0HQhPdX2UKGgGR0BxqcaisXBQaAdL4WgIR0CUT3uCf6GhdX2UKGgGR0ByD+xTsIE9aAdL92gIR0CUUGTXarWAdX2UKGgGR0BkEEvf0mMPaAdN6ANoCEdAlFUwyhzvJHV9lChoBkdAbi2Btk4FR2gHS/JoCEdAlFYzYukDZHV9lChoBkdAUTlItlI3BGgHS4RoCEdAlFbVUyYXwnV9lChoBkdAcbfQ4jrzG2gHS+xoCEdAlFl8C9ytFXV9lChoBkdAcXqE7W/ag2gHTQEBaAhHQJRathx5s0p1fZQoaAZHQCMJb2USqVBoB0unaAhHQJRbgzxgAp91fZQoaAZHQHILtj0+TvBoB00KAWgIR0CUXM7mMfihdX2UKGgGR0BQfuiN83MqaAdLmWgIR0CUXYSGahHtdX2UKGgGR0BxfxElVtGeaAdL9mgIR0CUYDs5GSZCdX2UKGgGR0BwrBS9/SYxaAdNGgFoCEdAlGG2kSElFHV9lChoBkdAbkRF8XvYvmgHS/JoCEdAlGL6lDWsinV9lChoBkdASVrHOryUcGgHS55oCEdAlGPRGpda+3V9lChoBkdAQmZGMGX5WWgHS7JoCEdAlGZZKjBVMnV9lChoBkdAck8pDu0CzWgHTQwBaAhHQJRntxaPjn51fZQoaAZHQHBGjqbBoEloB0viaAhHQJRo5kpZwGZ1fZQoaAZHQHCBN/WlMytoB0vraAhHQJRqG99MK1J1fZQoaAZHQHFxAMDwH7hoB00OAWgIR0CUa4S619fDdX2UKGgGR0ByaK89Oh0yaAdL0WgIR0CUbcNGViWndX2UKGgGR0ByfNwLmZE2aAdL6GgIR0CUbpv8qFyrdX2UKGgGR0BwbqvIOpbVaAdNCAFoCEdAlG+g+dK/VXV9lChoBkdAciAqnFYMfGgHS/1oCEdAlHCI3FUADXV9lChoBkdAcU19Wp6yB2gHS+RoCEdAlHJu/gzguXV9lChoBkdAbabJ2dNFjWgHS/9oCEdAlHNccZLqU3V9lChoBkdAcvZnanJkoWgHS+VoCEdAlHQ0lAu7H3V9lChoBkdATTOLzf779GgHS8ZoCEdAlHTtmUW2w3V9lChoBkdAb9TWZJCjUWgHS+VoCEdAlHbCwKSgXnV9lChoBkdAUulqBVdX1mgHS7NoCEdAlHdzwUg0THV9lChoBkdAcuhtnf2saWgHS+BoCEdAlHhHtWuHOHV9lChoBkdAQxt9nbqQimgHS6hoCEdAlHjpoTPBznV9lChoBkdAcKh9P1tfomgHS+toCEdAlHm8+u/1x3V9lChoBkdAQadUEPlMiGgHS3toCEdAlHor4agmJHV9lChoBkdAcar9KmKqGWgHS/xoCEdAlHwhKUVzqHV9lChoBkdATl/IIWxhUmgHS6JoCEdAlHy1abF0gnV9lChoBkdAc3LzgMtsemgHS8JoCEdAlH1rOAy2yHV9lChoBkdAcu0f+0gKW2gHTQoBaAhHQJR+ZTZQHiZ1fZQoaAZHQHKZcj3VTaVoB00LAWgIR0CUgHd9Ujs2dX2UKGgGR0BxosUBXCCSaAdL8WgIR0CUgV+lTFVDdX2UKGgGR0ByMxUCJXQuaAdL8mgIR0CUgkCAMDwIdX2UKGgGR0BvTdygf2boaAdL2mgIR0CUgwhky1u0dX2UKGgGR0BQHal+EytWaAdLlWgIR0CUg5wiJO32dX2UKGgGR0Bvkh/RVp9JaAdL5GgIR0CUhXPUrkKedX2UKGgGR0BylUvexfOVaAdNDwFoCEdAlIZv6oESunV9lChoBkdAcPT8w5/9YWgHS+5oCEdAlIdSTt9hJHV9lChoBkdAcHVj1PFefWgHTQ0BaAhHQJSITUmUnoh1fZQoaAZHQEN6tMfzSThoB0u0aAhHQJSJ951Ng0F1fZQoaAZHQHHwHQdCE6FoB0v9aAhHQJSK3/HYHxB1fZQoaAZHQHBYeV9nbqRoB0v6aAhHQJSLzOzIFNd1fZQoaAZHQHHCFjqfOD9oB01PAWgIR0CUjQkleF+NdX2UKGgGR0BQ+Xqmj0tiaAdLo2gIR0CUjp+fAbhndX2UKGgGR0BwnHWH1vl2aAdL92gIR0CUj4rVe8f3dX2UKGgGR0BwpUk7fYSQaAdLzmgIR0CUkEuKXOW0dX2UKGgGR0BBLhAnlXA/aAdLuWgIR0CUkPw5vLowdX2UKGgGR0BwYqFJxvNvaAdNPwFoCEdAlJIeYQarFXV9lChoBkdAScmKbayrxWgHS7doCEdAlJPT0xubZ3V9lChoBkdAcKPSiM5wO2gHS9loCEdAlJSfYao/A3V9lChoBkdAcAD/echC+mgHS+RoCEdAlJW1gYxcmnV9lChoBkdAcIhv4dp7C2gHS/doCEdAlJblpwjt5XV9lChoBkdAULFVea8Yh2gHS8JoCEdAlJlGG21D0HV9lChoBkdAcZtejmCAc2gHTRcBaAhHQJSamRvFWGR1fZQoaAZHQE7ub1AZ88doB0uvaAhHQJSbarn1WbR1fZQoaAZHQGNW5gG8mKJoB03oA2gIR0CUoj4+r2g4dX2UKGgGR0BxBEkTpPhyaAdNDAFoCEdAlKOpQpF1CHV9lChoBkdAcfXTwUg0TGgHS/VoCEdAlKTw6dUbUHV9lChoBkdAcnQs/IKc/mgHS9toCEdAlKerjDKoynV9lChoBkdAciLr7fpD/mgHS/VoCEdAlKj3y3CsO3V9lChoBkdAcJ6d9Ujs2WgHTRUBaAhHQJSqaowVTJh1fZQoaAZHQG98pLuhK15oB0vhaAhHQJSrjhKlHjJ1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 3908,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 1,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e040933973550c8989b6f6314ba37e32b642d51b3db0597996a1bde3dfe1c25
|
3 |
+
size 87545
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:288f79712a4502e363ace44c5d1c9882e392084eebd2ee5b8fe1cca5c9ef0789
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (139 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 252.04185104226298, "std_reward": 67.42315688208124, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-27T01:02:11.105101"}
|