Text Generation
Transformers
PyTorch
English
olmo2
conversational
Inference Endpoints
amanrangapur commited on
Commit
77db2fb
·
verified ·
1 Parent(s): f78a0c9

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +126 -0
README.md ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ pipeline_tag: text-generation
6
+ ---
7
+
8
+ <img alt="OLMo Logo" src="https://huggingface.co/datasets/allenai/blog-images/resolve/main/olmo2/olmo.png" width="242px">
9
+
10
+ OLMo 2 32B Instruct March 2025 is post-trained variant of the [OLMo-2 32B March 2025](https://huggingface.co/allenai/OLMo-2-0325-32B/) model, which has undergone supervised finetuning on an OLMo-specific variant of the [Tülu 3 dataset](https://huggingface.co/datasets/allenai/tulu-3-sft-olmo-2-mixture) and further DPO training on [this dataset](https://huggingface.co/datasets/allenai/olmo-2-1124-7b-preference-mix), and finally RLVR training using [this data](https://huggingface.co/datasets/allenai/RLVR-GSM).
11
+ Tülu 3 is designed for state-of-the-art performance on a diversity of tasks in addition to chat, such as MATH, GSM8K, and IFEval.
12
+ Check out the [OLMo 2 paper](https://arxiv.org/abs/2501.00656) or [Tülu 3 paper](https://arxiv.org/abs/2411.15124) for more details!
13
+
14
+ OLMo is a series of **O**pen **L**anguage **Mo**dels designed to enable the science of language models.
15
+ These models are trained on the Dolma dataset. We are releasing all code, checkpoints, logs, and associated training details.
16
+
17
+
18
+ ## Model description
19
+
20
+ - **Model type:** A model trained on a mix of publicly available, synthetic and human-created datasets.
21
+ - **Language(s) (NLP):** Primarily English
22
+ - **License:** Apache 2.0
23
+ - **Finetuned from model:** allenai/OLMo-2-0325-32B
24
+
25
+ ### Model Sources
26
+
27
+ - **Project Page:** https://allenai.org/olmo
28
+ - **Repositories:**
29
+ - Core repo (training, inference, fine-tuning etc.): https://github.com/allenai/OLMo-core
30
+ - Evaluation code: https://github.com/allenai/olmes
31
+ - Further fine-tuning code: https://github.com/allenai/open-instruct
32
+ - **Paper:** https://arxiv.org/abs/2501.00656
33
+ - **Demo:** https://playground.allenai.org/
34
+
35
+ ## Installation
36
+
37
+ OLMo 2 will be supported in the next version of Transformers, and you need to install it from the main branch using:
38
+ ```bash
39
+ pip install --upgrade git+https://github.com/huggingface/transformers.git
40
+ ```
41
+
42
+ ## Using the model
43
+
44
+ ### Loading with HuggingFace
45
+
46
+ To load the model with HuggingFace, use the following snippet:
47
+ ```
48
+ from transformers import AutoModelForCausalLM
49
+
50
+ olmo_model = AutoModelForCausalLM.from_pretrained("allenai/OLMo-2-1124-32B-SFT")
51
+ ```
52
+
53
+ ### Chat template
54
+
55
+ The chat template for our models is formatted as:
56
+ ```
57
+ <|endoftext|><|user|>\nHow are you doing?\n<|assistant|>\nI'm just a computer program, so I don't have feelings, but I'm functioning as expected. How can I assist you today?<|endoftext|>
58
+ ```
59
+ Or with new lines expanded:
60
+ ```
61
+ <|endoftext|><|user|>
62
+ How are you doing?
63
+ <|assistant|>
64
+ I'm just a computer program, so I don't have feelings, but I'm functioning as expected. How can I assist you today?<|endoftext|>
65
+ ```
66
+ It is embedded within the tokenizer as well, for `tokenizer.apply_chat_template`.
67
+
68
+ ### System prompt
69
+
70
+ In Ai2 demos, we use this system prompt by default:
71
+ ```
72
+ You are OLMo 2, a helpful and harmless AI Assistant built by the Allen Institute for AI.
73
+ ```
74
+ The model has not been trained with a specific system prompt in mind.
75
+
76
+ ### Bias, Risks, and Limitations
77
+
78
+ The OLMo-2 models have limited safety training, but are not deployed automatically with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so).
79
+ See the Falcon 180B model card for an example of this.
80
+
81
+
82
+ ## Performance
83
+
84
+ | Model | Average | AlpacaEval | BBH | DROP | GSM8k | IFEval | MATH | MMLU | Safety | PopQA | TruthQA |
85
+ |-------|---------|------------|-----|------|--------|---------|------|-------|---------|-------|---------|
86
+ | **Open weights models** |
87
+ | Gemma-2-9B-it | 51.9 | 43.7 | 2.5 | 58.8 | 79.7 | 69.9 | 29.8 | 69.1 | 75.5 | 28.3 | 61.4 |
88
+ | Ministral-8B-Instruct | 52.1 | 31.4 | 56.2 | 56.2 | 80.0 | 56.4 | 40.0 | 68.5 | 56.2 | 20.2 | 55.5 |
89
+ | Mistral-Nemo-Instruct-2407 | 50.9 | 45.8 | 54.6 | 23.6 | 81.4 | 64.5 | 31.9 | 70.0 | 52.7 | 26.9 | 57.7 |
90
+ | Qwen-2.5-7B-Instruct | 57.1 | 29.7 | 25.3 | 54.4 | 83.8 | 74.7 | 69.9 | 76.6 | 75.0 | 18.1 | 63.1 |
91
+ | Llama-3.1-8B-Instruct | 58.9 | 25.8 | 69.7 | 61.7 | 83.4 | 80.6 | 42.5 | 71.3 | 70.2 | 28.4 | 55.1 |
92
+ | Tülu 3 8B | 60.4 | 34.0 | 66.0 | 62.6 | 87.6 | 82.4 | 43.7 | 68.2 | 75.4 | 29.1 | 55.0 |
93
+ | Qwen-2.5-14B-Instruct | 60.8 | 34.6 | 34.0 | 50.5 | 83.9 | 82.4 | 70.6 | 81.1 | 79.3 | 21.1 | 70.8 |
94
+ | **Fully open models** |
95
+ | OLMo-7B-Instruct | 28.2 | 5.2 | 35.3 | 30.7 | 14.3 | 32.2 | 2.1 | 46.3 | 54.0 | 17.1 | 44.5 |
96
+ | OLMo-7B-0424-Instruct | 33.1 | 8.5 | 34.4 | 47.9 | 23.2 | 39.2 | 5.2 | 48.9 | 49.3 | 18.9 | 55.2 |
97
+ | OLMoE-1B-7B-0924-Instruct | 35.5 | 8.5 | 37.2 | 34.3 | 47.2 | 46.2 | 8.4 | 51.6 | 51.6 | 20.6 | 49.1 |
98
+ | MAP-Neo-7B-Instruct | 42.9 | 17.6 | 26.4 | 48.2 | 69.4 | 35.9 | 31.5 | 56.5 | 73.7 | 18.4 | 51.6 |
99
+ | *OLMo-2-7B-SFT* | 50.2 | 10.2 | 49.7 | 59.6 | 74.6 | 66.9 | 25.3 | 61.1 | 82.1 | 23.6 | 48.6 |
100
+ | *OLMo-2-7B-DPO* | 54.2 | 27.9 | 46.7 | 60.2 | 82.6 | 73.0 | 30.3 | 60.8 | 81.0 | 23.5 | 56.0 |
101
+ | *OLMo-2-13B-SFT* | 55.3 | 11.5 | 59.6 | 71.3 | 76.3 | 68.6 | 29.5 | 68.0 | 82.3 | 29.4 | 57.1 |
102
+ | *OLMo-2-13B-DPO* | 60.6 | 38.3 | 57.9 | 71.5 | 82.3 | 80.2 | 35.2 | 67.9 | 79.7 | 29.0 | 63.9 |
103
+ | **OLMo-2-7B-1124–Instruct** | 54.8 | 29.1 | 46.6 | 60.5 | 85.1 | 72.3 | 32.5 | 61.3 | 80.6 | 23.2 | 56.5 |
104
+ | **OLMo-2-13B-1124-Instruct** | 62.0 | 39.5 | 58.8 | 71.5 | 87.4 | 82.6 | 39.2 | 68.5 | 79.1 | 28.8 | 64.3 |
105
+
106
+
107
+ ## License and use
108
+
109
+ OLMo 2 is licensed under the Apache 2.0 license.
110
+ OLMo 2 is intended for research and educational use.
111
+ For more information, please see our [Responsible Use Guidelines](https://allenai.org/responsible-use).
112
+ This model has been fine-tuned using a dataset mix with outputs generated from third party models and are subject to additional terms: [Gemma Terms of Use](https://ai.google.dev/gemma/terms).
113
+
114
+ ## Citation
115
+
116
+ ```bibtex
117
+ @article{olmo20242olmo2furious,
118
+ title={2 OLMo 2 Furious},
119
+ author={Team OLMo and Pete Walsh and Luca Soldaini and Dirk Groeneveld and Kyle Lo and Shane Arora and Akshita Bhagia and Yuling Gu and Shengyi Huang and Matt Jordan and Nathan Lambert and Dustin Schwenk and Oyvind Tafjord and Taira Anderson and David Atkinson and Faeze Brahman and Christopher Clark and Pradeep Dasigi and Nouha Dziri and Michal Guerquin and Hamish Ivison and Pang Wei Koh and Jiacheng Liu and Saumya Malik and William Merrill and Lester James V. Miranda and Jacob Morrison and Tyler Murray and Crystal Nam and Valentina Pyatkin and Aman Rangapur and Michael Schmitz and Sam Skjonsberg and David Wadden and Christopher Wilhelm and Michael Wilson and Luke Zettlemoyer and Ali Farhadi and Noah A. Smith and Hannaneh Hajishirzi},
120
+ year={2024},
121
+ eprint={2501.00656},
122
+ archivePrefix={arXiv},
123
+ primaryClass={cs.CL},
124
+ url={https://arxiv.org/abs/2501.00656},
125
+ }
126
+ ```