alkiskoudounas commited on
Commit
c02ebdc
·
verified ·
1 Parent(s): 5798229

Created README

Browse files
Files changed (1) hide show
  1. README.md +66 -0
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ task_categories:
3
+ - audio-classification
4
+ language:
5
+ - it
6
+ tags:
7
+ - intent
8
+ - intent-classification
9
+ - audio-classification
10
+ - audio
11
+ pretty_name: ITALIC
12
+ size_categories:
13
+ - 10K<n<100K
14
+ base_model:
15
+ - facebook/wav2vec2-xls-r-300m
16
+ datasets:
17
+ - RiTA-nlp/ITALIC
18
+ library_name: transformers
19
+ ---
20
+
21
+ # wav2vec 2.0 XLS-R 128 (300m) fine-tuned on ITALIC - "Hard Noisy"
22
+
23
+ ITALIC is an intent classification dataset for the Italian language, which is the first of its kind.
24
+ It includes spoken and written utterances and is annotated with 60 intents.
25
+ The dataset is available on [Zenodo](https://zenodo.org/record/8040649) and connectors ara available for the [HuggingFace Hub](https://huggingface.co/datasets/RiTA-nlp/ITALIC).
26
+
27
+ This is the [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) model fine-tuned on the "Hard Noisy" split.
28
+
29
+ ## Usage
30
+
31
+ You can use the model directly in the following manner:
32
+
33
+ ```python
34
+ import torch
35
+ import librosa
36
+ from transformers import AutoModelForAudioClassification, AutoFeatureExtractor
37
+
38
+ ## Load an audio file
39
+ audio_array, sr = librosa.load("path_to_audio.wav", sr=16000)
40
+
41
+ ## Load model and feature extractor
42
+ model = AutoModelForAudioClassification.from_pretrained("alkiskoudounas/xls-r-128-italic-noisy")
43
+ feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-xls-r-300m")
44
+
45
+ ## Extract features
46
+ inputs = feature_extractor(audio_array.squeeze(), sampling_rate=feature_extractor.sampling_rate, padding=True, return_tensors="pt")
47
+
48
+ ## Compute logits
49
+ logits = model(**inputs).logits
50
+ ```
51
+
52
+ For more information about the dataset and the model, please refer to the [paper](https://arxiv.org/abs/2306.08502).
53
+
54
+ ## Citation
55
+
56
+ If you use this model in your research, please cite the following paper:
57
+
58
+ ```bibtex
59
+ @inproceedings{koudounas2023italic,
60
+ title={ITALIC: An Italian Intent Classification Dataset},
61
+ author={Koudounas, Alkis and La Quatra, Moreno and Vaiani, Lorenzo and Colomba, Luca and Attanasio, Giuseppe and Pastor, Eliana and Cagliero, Luca and Baralis, Elena},
62
+ booktitle={Proc. Interspeech 2023},
63
+ pages={2153--2157},
64
+ year={2023}
65
+ }
66
+ ```