alibabasglab commited on
Commit
c8c9209
·
verified ·
1 Parent(s): 1284920

Upload 6 files

Browse files
checkpoints/.DS_Store ADDED
Binary file (6.15 kB). View file
 
checkpoints/log_wsj0-2mix_speech_SpEx-plus_2spk/config.yaml ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Config file
2
+
3
+ # Log
4
+ seed: 777
5
+ use_cuda: 1 # 1 for True, 0 for False
6
+
7
+ # dataset
8
+ speaker_no: 2
9
+ mix_lst_path: ./data/wsj0_2mix/
10
+ audio_direc: /mnt/nas_sg/wulanchabu/zexu.pan/datasets/
11
+ reference_direc: /mnt/nas_sg/wulanchabu/zexu.pan/datasets/
12
+ audio_sr: 8000
13
+ ref_sr: 8000
14
+
15
+ # dataloader
16
+ num_workers: 4
17
+ batch_size: 4 # 2-GPU training with a total effective batch size of 8
18
+ accu_grad: 0
19
+ effec_batch_size: 4 # per GPU, only used if accu_grad is set to 1, must be multiple times of batch size
20
+ max_length: 4 # truncate the utterances in dataloader, in seconds
21
+
22
+ # network settings
23
+ init_from: None # 'None' or a log name 'log_2024-07-22(18:12:13)'
24
+ causal: 0 # 1 for True, 0 for False
25
+ network_reference:
26
+ cue: speech # lip or speech or gesture or EEG
27
+ network_audio:
28
+ backbone: SpEx-plus
29
+ L: 20
30
+ N: 256
31
+ X: 8
32
+ R: 4
33
+ B: 256
34
+ H: 512
35
+ P: 3
36
+ norm: gLN
37
+ non_linear: relu
38
+ speakers: 101 # 101 speakers in wsj0-2mix training set
39
+
40
+ # optimizer
41
+ loss_type: SpEx-plus # spex loss in paper
42
+ init_learning_rate: 0.001
43
+ max_epoch: 200
44
+ clip_grad_norm: 5
checkpoints/log_wsj0-2mix_speech_SpEx-plus_2spk/last_best_checkpoint.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ffcf87a45f46ece3fa43db5b4d7f9779a73392933fed0b563f0ead9bd9b492f
3
+ size 134255410
checkpoints/log_wsj0-2mix_speech_SpEx-plus_2spk/last_checkpoint.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2399b66b4eb8eab7c4c31482a20c24cfb92f0c49682400b97c5d5eb8d6b8b69f
3
+ size 134246515
checkpoints/log_wsj0-2mix_speech_SpEx-plus_2spk/log_2024-10-02(16:13:54).txt ADDED
@@ -0,0 +1,803 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Config file
2
+
3
+ # Log
4
+ seed: 777
5
+ use_cuda: 1 # 1 for True, 0 for False
6
+
7
+ # dataset
8
+ speaker_no: 2
9
+ mix_lst_path: ./data/wsj0_2mix/
10
+ audio_direc: /mnt/nas_sg/wulanchabu/zexu.pan/datasets/
11
+ reference_direc: /mnt/nas_sg/wulanchabu/zexu.pan/datasets/
12
+ audio_sr: 8000
13
+ ref_sr: 8000
14
+
15
+ # dataloader
16
+ num_workers: 4
17
+ batch_size: 4 # 2-GPU training with a total effective batch size of 8
18
+ accu_grad: 0
19
+ effec_batch_size: 4 # per GPU, only used if accu_grad is set to 1, must be multiple times of batch size
20
+ max_length: 4 # truncate the utterances in dataloader, in seconds
21
+
22
+ # network settings
23
+ init_from: None # 'None' or a log name 'log_2024-07-22(18:12:13)'
24
+ causal: 0 # 1 for True, 0 for False
25
+ network_reference:
26
+ cue: speech # lip or speech or gesture or EEG
27
+ network_audio:
28
+ backbone: SpEx-plus
29
+ L: 20
30
+ N: 256
31
+ X: 8
32
+ R: 4
33
+ B: 256
34
+ H: 512
35
+ P: 3
36
+ norm: gLN
37
+ non_linear: relu
38
+ speakers: 101 # 101 speakers in wsj0-2mix training set
39
+
40
+ # optimizer
41
+ loss_type: SpEx-plus # spex loss in paper
42
+ init_learning_rate: 0.001
43
+ max_epoch: 200
44
+ clip_grad_norm: 5
45
+ W1002 16:13:58.402247 140563653224256 torch/distributed/run.py:779]
46
+ W1002 16:13:58.402247 140563653224256 torch/distributed/run.py:779] *****************************************
47
+ W1002 16:13:58.402247 140563653224256 torch/distributed/run.py:779] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
48
+ W1002 16:13:58.402247 140563653224256 torch/distributed/run.py:779] *****************************************
49
+ [W1002 16:14:02.131922970 Utils.hpp:135] Warning: Environment variable NCCL_ASYNC_ERROR_HANDLING is deprecated; use TORCH_NCCL_ASYNC_ERROR_HANDLING instead (function operator())
50
+ [W1002 16:14:02.132797365 Utils.hpp:135] Warning: Environment variable NCCL_ASYNC_ERROR_HANDLING is deprecated; use TORCH_NCCL_ASYNC_ERROR_HANDLING instead (function operator())
51
+ started on checkpoints/log_2024-10-02(16:13:54)
52
+
53
+ namespace(accu_grad=0, audio_direc='/mnt/nas_sg/wulanchabu/zexu.pan/datasets/', audio_sr=8000, batch_size=4, causal=0, checkpoint_dir='checkpoints/log_2024-10-02(16:13:54)', clip_grad_norm=5.0, config=[<yamlargparse.Path object at 0x7feab35cbd00>], device=device(type='cuda'), distributed=True, effec_batch_size=4, init_from='None', init_learning_rate=0.001, local_rank=0, loss_type='SpEx-plus', lr_warmup=0, max_epoch=200, max_length=4, mix_lst_path='./data/wsj0_2mix/', network_audio=namespace(B=256, H=512, L=20, N=256, P=3, R=4, X=8, backbone='SpEx-plus', non_linear='relu', norm='gLN', speakers=101), network_reference=namespace(cue='speech'), num_workers=4, ref_sr=8000, reference_direc='/mnt/nas_sg/wulanchabu/zexu.pan/datasets/', seed=777, speaker_no=2, train_from_last_checkpoint=0, use_cuda=1, world_size=2)
54
+ network_wrapper(
55
+ (sep_network): SpEx_plus(
56
+ (encoder_1d_short): Conv1D(1, 256, kernel_size=(20,), stride=(10,))
57
+ (encoder_1d_middle): Conv1D(1, 256, kernel_size=(80,), stride=(10,))
58
+ (encoder_1d_long): Conv1D(1, 256, kernel_size=(160,), stride=(10,))
59
+ (ln): ChannelWiseLayerNorm((768,), eps=1e-05, elementwise_affine=True)
60
+ (proj): Conv1D(768, 256, kernel_size=(1,), stride=(1,))
61
+ (conv_block_1): Conv1DBlock_v2(
62
+ (conv1x1): Conv1D(512, 512, kernel_size=(1,), stride=(1,))
63
+ (prelu1): PReLU(num_parameters=1)
64
+ (lnorm1): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
65
+ (dconv): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(1,), groups=512)
66
+ (prelu2): PReLU(num_parameters=1)
67
+ (lnorm2): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
68
+ (sconv): Conv1d(512, 256, kernel_size=(1,), stride=(1,))
69
+ )
70
+ (conv_block_1_other): Sequential(
71
+ (0): Conv1DBlock(
72
+ (conv1x1): Conv1D(256, 512, kernel_size=(1,), stride=(1,))
73
+ (prelu1): PReLU(num_parameters=1)
74
+ (lnorm1): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
75
+ (dconv): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,), groups=512)
76
+ (prelu2): PReLU(num_parameters=1)
77
+ (lnorm2): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
78
+ (sconv): Conv1d(512, 256, kernel_size=(1,), stride=(1,))
79
+ )
80
+ (1): Conv1DBlock(
81
+ (conv1x1): Conv1D(256, 512, kernel_size=(1,), stride=(1,))
82
+ (prelu1): PReLU(num_parameters=1)
83
+ (lnorm1): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
84
+ (dconv): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(4,), groups=512)
85
+ (prelu2): PReLU(num_parameters=1)
86
+ (lnorm2): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
87
+ (sconv): Conv1d(512, 256, kernel_size=(1,), stride=(1,))
88
+ )
89
+ (2): Conv1DBlock(
90
+ (conv1x1): Conv1D(256, 512, kernel_size=(1,), stride=(1,))
91
+ (prelu1): PReLU(num_parameters=1)
92
+ (lnorm1): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
93
+ (dconv): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(8,), groups=512)
94
+ (prelu2): PReLU(num_parameters=1)
95
+ (lnorm2): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
96
+ (sconv): Conv1d(512, 256, kernel_size=(1,), stride=(1,))
97
+ )
98
+ (3): Conv1DBlock(
99
+ (conv1x1): Conv1D(256, 512, kernel_size=(1,), stride=(1,))
100
+ (prelu1): PReLU(num_parameters=1)
101
+ (lnorm1): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
102
+ (dconv): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(16,), groups=512)
103
+ (prelu2): PReLU(num_parameters=1)
104
+ (lnorm2): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
105
+ (sconv): Conv1d(512, 256, kernel_size=(1,), stride=(1,))
106
+ )
107
+ (4): Conv1DBlock(
108
+ (conv1x1): Conv1D(256, 512, kernel_size=(1,), stride=(1,))
109
+ (prelu1): PReLU(num_parameters=1)
110
+ (lnorm1): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
111
+ (dconv): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(32,), dilation=(32,), groups=512)
112
+ (prelu2): PReLU(num_parameters=1)
113
+ (lnorm2): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
114
+ (sconv): Conv1d(512, 256, kernel_size=(1,), stride=(1,))
115
+ )
116
+ (5): Conv1DBlock(
117
+ (conv1x1): Conv1D(256, 512, kernel_size=(1,), stride=(1,))
118
+ (prelu1): PReLU(num_parameters=1)
119
+ (lnorm1): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
120
+ (dconv): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(64,), dilation=(64,), groups=512)
121
+ (prelu2): PReLU(num_parameters=1)
122
+ (lnorm2): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
123
+ (sconv): Conv1d(512, 256, kernel_size=(1,), stride=(1,))
124
+ )
125
+ (6): Conv1DBlock(
126
+ (conv1x1): Conv1D(256, 512, kernel_size=(1,), stride=(1,))
127
+ (prelu1): PReLU(num_parameters=1)
128
+ (lnorm1): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
129
+ (dconv): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(128,), dilation=(128,), groups=512)
130
+ (prelu2): PReLU(num_parameters=1)
131
+ (lnorm2): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
132
+ (sconv): Conv1d(512, 256, kernel_size=(1,), stride=(1,))
133
+ )
134
+ )
135
+ (conv_block_2): Conv1DBlock_v2(
136
+ (conv1x1): Conv1D(512, 512, kernel_size=(1,), stride=(1,))
137
+ (prelu1): PReLU(num_parameters=1)
138
+ (lnorm1): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
139
+ (dconv): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(1,), groups=512)
140
+ (prelu2): PReLU(num_parameters=1)
141
+ (lnorm2): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
142
+ (sconv): Conv1d(512, 256, kernel_size=(1,), stride=(1,))
143
+ )
144
+ (conv_block_2_other): Sequential(
145
+ (0): Conv1DBlock(
146
+ (conv1x1): Conv1D(256, 512, kernel_size=(1,), stride=(1,))
147
+ (prelu1): PReLU(num_parameters=1)
148
+ (lnorm1): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
149
+ (dconv): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,), groups=512)
150
+ (prelu2): PReLU(num_parameters=1)
151
+ (lnorm2): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
152
+ (sconv): Conv1d(512, 256, kernel_size=(1,), stride=(1,))
153
+ )
154
+ (1): Conv1DBlock(
155
+ (conv1x1): Conv1D(256, 512, kernel_size=(1,), stride=(1,))
156
+ (prelu1): PReLU(num_parameters=1)
157
+ (lnorm1): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
158
+ (dconv): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(4,), groups=512)
159
+ (prelu2): PReLU(num_parameters=1)
160
+ (lnorm2): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
161
+ (sconv): Conv1d(512, 256, kernel_size=(1,), stride=(1,))
162
+ )
163
+ (2): Conv1DBlock(
164
+ (conv1x1): Conv1D(256, 512, kernel_size=(1,), stride=(1,))
165
+ (prelu1): PReLU(num_parameters=1)
166
+ (lnorm1): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
167
+ (dconv): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(8,), groups=512)
168
+ (prelu2): PReLU(num_parameters=1)
169
+ (lnorm2): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
170
+ (sconv): Conv1d(512, 256, kernel_size=(1,), stride=(1,))
171
+ )
172
+ (3): Conv1DBlock(
173
+ (conv1x1): Conv1D(256, 512, kernel_size=(1,), stride=(1,))
174
+ (prelu1): PReLU(num_parameters=1)
175
+ (lnorm1): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
176
+ (dconv): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(16,), groups=512)
177
+ (prelu2): PReLU(num_parameters=1)
178
+ (lnorm2): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
179
+ (sconv): Conv1d(512, 256, kernel_size=(1,), stride=(1,))
180
+ )
181
+ (4): Conv1DBlock(
182
+ (conv1x1): Conv1D(256, 512, kernel_size=(1,), stride=(1,))
183
+ (prelu1): PReLU(num_parameters=1)
184
+ (lnorm1): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
185
+ (dconv): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(32,), dilation=(32,), groups=512)
186
+ (prelu2): PReLU(num_parameters=1)
187
+ (lnorm2): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
188
+ (sconv): Conv1d(512, 256, kernel_size=(1,), stride=(1,))
189
+ )
190
+ (5): Conv1DBlock(
191
+ (conv1x1): Conv1D(256, 512, kernel_size=(1,), stride=(1,))
192
+ (prelu1): PReLU(num_parameters=1)
193
+ (lnorm1): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
194
+ (dconv): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(64,), dilation=(64,), groups=512)
195
+ (prelu2): PReLU(num_parameters=1)
196
+ (lnorm2): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
197
+ (sconv): Conv1d(512, 256, kernel_size=(1,), stride=(1,))
198
+ )
199
+ (6): Conv1DBlock(
200
+ (conv1x1): Conv1D(256, 512, kernel_size=(1,), stride=(1,))
201
+ (prelu1): PReLU(num_parameters=1)
202
+ (lnorm1): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
203
+ (dconv): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(128,), dilation=(128,), groups=512)
204
+ (prelu2): PReLU(num_parameters=1)
205
+ (lnorm2): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
206
+ (sconv): Conv1d(512, 256, kernel_size=(1,), stride=(1,))
207
+ )
208
+ )
209
+ (conv_block_3): Conv1DBlock_v2(
210
+ (conv1x1): Conv1D(512, 512, kernel_size=(1,), stride=(1,))
211
+ (prelu1): PReLU(num_parameters=1)
212
+ (lnorm1): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
213
+ (dconv): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(1,), groups=512)
214
+ (prelu2): PReLU(num_parameters=1)
215
+ (lnorm2): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
216
+ (sconv): Conv1d(512, 256, kernel_size=(1,), stride=(1,))
217
+ )
218
+ (conv_block_3_other): Sequential(
219
+ (0): Conv1DBlock(
220
+ (conv1x1): Conv1D(256, 512, kernel_size=(1,), stride=(1,))
221
+ (prelu1): PReLU(num_parameters=1)
222
+ (lnorm1): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
223
+ (dconv): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,), groups=512)
224
+ (prelu2): PReLU(num_parameters=1)
225
+ (lnorm2): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
226
+ (sconv): Conv1d(512, 256, kernel_size=(1,), stride=(1,))
227
+ )
228
+ (1): Conv1DBlock(
229
+ (conv1x1): Conv1D(256, 512, kernel_size=(1,), stride=(1,))
230
+ (prelu1): PReLU(num_parameters=1)
231
+ (lnorm1): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
232
+ (dconv): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(4,), groups=512)
233
+ (prelu2): PReLU(num_parameters=1)
234
+ (lnorm2): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
235
+ (sconv): Conv1d(512, 256, kernel_size=(1,), stride=(1,))
236
+ )
237
+ (2): Conv1DBlock(
238
+ (conv1x1): Conv1D(256, 512, kernel_size=(1,), stride=(1,))
239
+ (prelu1): PReLU(num_parameters=1)
240
+ (lnorm1): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
241
+ (dconv): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(8,), groups=512)
242
+ (prelu2): PReLU(num_parameters=1)
243
+ (lnorm2): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
244
+ (sconv): Conv1d(512, 256, kernel_size=(1,), stride=(1,))
245
+ )
246
+ (3): Conv1DBlock(
247
+ (conv1x1): Conv1D(256, 512, kernel_size=(1,), stride=(1,))
248
+ (prelu1): PReLU(num_parameters=1)
249
+ (lnorm1): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
250
+ (dconv): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(16,), groups=512)
251
+ (prelu2): PReLU(num_parameters=1)
252
+ (lnorm2): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
253
+ (sconv): Conv1d(512, 256, kernel_size=(1,), stride=(1,))
254
+ )
255
+ (4): Conv1DBlock(
256
+ (conv1x1): Conv1D(256, 512, kernel_size=(1,), stride=(1,))
257
+ (prelu1): PReLU(num_parameters=1)
258
+ (lnorm1): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
259
+ (dconv): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(32,), dilation=(32,), groups=512)
260
+ (prelu2): PReLU(num_parameters=1)
261
+ (lnorm2): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
262
+ (sconv): Conv1d(512, 256, kernel_size=(1,), stride=(1,))
263
+ )
264
+ (5): Conv1DBlock(
265
+ (conv1x1): Conv1D(256, 512, kernel_size=(1,), stride=(1,))
266
+ (prelu1): PReLU(num_parameters=1)
267
+ (lnorm1): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
268
+ (dconv): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(64,), dilation=(64,), groups=512)
269
+ (prelu2): PReLU(num_parameters=1)
270
+ (lnorm2): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
271
+ (sconv): Conv1d(512, 256, kernel_size=(1,), stride=(1,))
272
+ )
273
+ (6): Conv1DBlock(
274
+ (conv1x1): Conv1D(256, 512, kernel_size=(1,), stride=(1,))
275
+ (prelu1): PReLU(num_parameters=1)
276
+ (lnorm1): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
277
+ (dconv): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(128,), dilation=(128,), groups=512)
278
+ (prelu2): PReLU(num_parameters=1)
279
+ (lnorm2): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
280
+ (sconv): Conv1d(512, 256, kernel_size=(1,), stride=(1,))
281
+ )
282
+ )
283
+ (conv_block_4): Conv1DBlock_v2(
284
+ (conv1x1): Conv1D(512, 512, kernel_size=(1,), stride=(1,))
285
+ (prelu1): PReLU(num_parameters=1)
286
+ (lnorm1): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
287
+ (dconv): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(1,), groups=512)
288
+ (prelu2): PReLU(num_parameters=1)
289
+ (lnorm2): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
290
+ (sconv): Conv1d(512, 256, kernel_size=(1,), stride=(1,))
291
+ )
292
+ (conv_block_4_other): Sequential(
293
+ (0): Conv1DBlock(
294
+ (conv1x1): Conv1D(256, 512, kernel_size=(1,), stride=(1,))
295
+ (prelu1): PReLU(num_parameters=1)
296
+ (lnorm1): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
297
+ (dconv): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,), groups=512)
298
+ (prelu2): PReLU(num_parameters=1)
299
+ (lnorm2): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
300
+ (sconv): Conv1d(512, 256, kernel_size=(1,), stride=(1,))
301
+ )
302
+ (1): Conv1DBlock(
303
+ (conv1x1): Conv1D(256, 512, kernel_size=(1,), stride=(1,))
304
+ (prelu1): PReLU(num_parameters=1)
305
+ (lnorm1): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
306
+ (dconv): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(4,), dilation=(4,), groups=512)
307
+ (prelu2): PReLU(num_parameters=1)
308
+ (lnorm2): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
309
+ (sconv): Conv1d(512, 256, kernel_size=(1,), stride=(1,))
310
+ )
311
+ (2): Conv1DBlock(
312
+ (conv1x1): Conv1D(256, 512, kernel_size=(1,), stride=(1,))
313
+ (prelu1): PReLU(num_parameters=1)
314
+ (lnorm1): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
315
+ (dconv): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(8,), dilation=(8,), groups=512)
316
+ (prelu2): PReLU(num_parameters=1)
317
+ (lnorm2): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
318
+ (sconv): Conv1d(512, 256, kernel_size=(1,), stride=(1,))
319
+ )
320
+ (3): Conv1DBlock(
321
+ (conv1x1): Conv1D(256, 512, kernel_size=(1,), stride=(1,))
322
+ (prelu1): PReLU(num_parameters=1)
323
+ (lnorm1): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
324
+ (dconv): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(16,), dilation=(16,), groups=512)
325
+ (prelu2): PReLU(num_parameters=1)
326
+ (lnorm2): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
327
+ (sconv): Conv1d(512, 256, kernel_size=(1,), stride=(1,))
328
+ )
329
+ (4): Conv1DBlock(
330
+ (conv1x1): Conv1D(256, 512, kernel_size=(1,), stride=(1,))
331
+ (prelu1): PReLU(num_parameters=1)
332
+ (lnorm1): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
333
+ (dconv): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(32,), dilation=(32,), groups=512)
334
+ (prelu2): PReLU(num_parameters=1)
335
+ (lnorm2): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
336
+ (sconv): Conv1d(512, 256, kernel_size=(1,), stride=(1,))
337
+ )
338
+ (5): Conv1DBlock(
339
+ (conv1x1): Conv1D(256, 512, kernel_size=(1,), stride=(1,))
340
+ (prelu1): PReLU(num_parameters=1)
341
+ (lnorm1): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
342
+ (dconv): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(64,), dilation=(64,), groups=512)
343
+ (prelu2): PReLU(num_parameters=1)
344
+ (lnorm2): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
345
+ (sconv): Conv1d(512, 256, kernel_size=(1,), stride=(1,))
346
+ )
347
+ (6): Conv1DBlock(
348
+ (conv1x1): Conv1D(256, 512, kernel_size=(1,), stride=(1,))
349
+ (prelu1): PReLU(num_parameters=1)
350
+ (lnorm1): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
351
+ (dconv): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(128,), dilation=(128,), groups=512)
352
+ (prelu2): PReLU(num_parameters=1)
353
+ (lnorm2): GlobalChannelLayerNorm(512, eps=1e-05, elementwise_affine=True)
354
+ (sconv): Conv1d(512, 256, kernel_size=(1,), stride=(1,))
355
+ )
356
+ )
357
+ (mask1): Conv1D(256, 256, kernel_size=(1,), stride=(1,))
358
+ (mask2): Conv1D(256, 256, kernel_size=(1,), stride=(1,))
359
+ (mask3): Conv1D(256, 256, kernel_size=(1,), stride=(1,))
360
+ (decoder_1d_1): ConvTrans1D(256, 1, kernel_size=(20,), stride=(10,))
361
+ (decoder_1d_2): ConvTrans1D(256, 1, kernel_size=(80,), stride=(10,))
362
+ (decoder_1d_3): ConvTrans1D(256, 1, kernel_size=(160,), stride=(10,))
363
+ (aux_enc3): Sequential(
364
+ (0): ChannelWiseLayerNorm((768,), eps=1e-05, elementwise_affine=True)
365
+ (1): Conv1D(768, 256, kernel_size=(1,), stride=(1,))
366
+ (2): ResBlock(
367
+ (conv1): Conv1d(256, 256, kernel_size=(1,), stride=(1,), bias=False)
368
+ (conv2): Conv1d(256, 256, kernel_size=(1,), stride=(1,), bias=False)
369
+ (batch_norm1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
370
+ (batch_norm2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
371
+ (prelu1): PReLU(num_parameters=1)
372
+ (prelu2): PReLU(num_parameters=1)
373
+ (mp): MaxPool1d(kernel_size=3, stride=3, padding=0, dilation=1, ceil_mode=False)
374
+ )
375
+ (3): ResBlock(
376
+ (conv1): Conv1d(256, 512, kernel_size=(1,), stride=(1,), bias=False)
377
+ (conv2): Conv1d(512, 512, kernel_size=(1,), stride=(1,), bias=False)
378
+ (batch_norm1): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
379
+ (batch_norm2): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
380
+ (prelu1): PReLU(num_parameters=1)
381
+ (prelu2): PReLU(num_parameters=1)
382
+ (mp): MaxPool1d(kernel_size=3, stride=3, padding=0, dilation=1, ceil_mode=False)
383
+ (conv_downsample): Conv1d(256, 512, kernel_size=(1,), stride=(1,), bias=False)
384
+ )
385
+ (4): ResBlock(
386
+ (conv1): Conv1d(512, 512, kernel_size=(1,), stride=(1,), bias=False)
387
+ (conv2): Conv1d(512, 512, kernel_size=(1,), stride=(1,), bias=False)
388
+ (batch_norm1): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
389
+ (batch_norm2): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
390
+ (prelu1): PReLU(num_parameters=1)
391
+ (prelu2): PReLU(num_parameters=1)
392
+ (mp): MaxPool1d(kernel_size=3, stride=3, padding=0, dilation=1, ceil_mode=False)
393
+ )
394
+ (5): Conv1D(512, 256, kernel_size=(1,), stride=(1,))
395
+ )
396
+ (pred_linear): Linear(in_features=256, out_features=101, bias=True)
397
+ )
398
+ )
399
+
400
+ Total number of parameters: 11138734
401
+
402
+
403
+ Total number of trainable parameters: 11138734
404
+
405
+ Initialised Softmax Loss
406
+ Initialised Softmax Loss
407
+ dsw-106518-965b74ddc-cdclg:3549648:3549648 [0] NCCL INFO Bootstrap : Using net0:10.32.15.154<0>
408
+ dsw-106518-965b74ddc-cdclg:3549648:3549648 [0] NCCL INFO NET/Plugin : dlerror=libnccl-net.so: cannot open shared object file: No such file or directory No plugin found (libnccl-net.so), using internal implementation
409
+ dsw-106518-965b74ddc-cdclg:3549648:3549648 [0] NCCL INFO cudaDriverVersion 11040
410
+ NCCL version 2.20.5+cuda11.8
411
+ dsw-106518-965b74ddc-cdclg:3549649:3549649 [1] NCCL INFO cudaDriverVersion 11040
412
+ dsw-106518-965b74ddc-cdclg:3549649:3549649 [1] NCCL INFO Bootstrap : Using net0:10.32.15.154<0>
413
+ dsw-106518-965b74ddc-cdclg:3549649:3549649 [1] NCCL INFO NET/Plugin : dlerror=libnccl-net.so: cannot open shared object file: No such file or directory No plugin found (libnccl-net.so), using internal implementation
414
+ dsw-106518-965b74ddc-cdclg:3549648:3549739 [0] NCCL INFO Failed to open libibverbs.so[.1]
415
+ dsw-106518-965b74ddc-cdclg:3549649:3549740 [1] NCCL INFO Failed to open libibverbs.so[.1]
416
+ dsw-106518-965b74ddc-cdclg:3549648:3549739 [0] NCCL INFO NET/Socket : Using [0]net0:10.32.15.154<0> [1]eth0:22.5.146.138<0>
417
+ dsw-106518-965b74ddc-cdclg:3549649:3549740 [1] NCCL INFO NET/Socket : Using [0]net0:10.32.15.154<0> [1]eth0:22.5.146.138<0>
418
+ dsw-106518-965b74ddc-cdclg:3549648:3549739 [0] NCCL INFO Using non-device net plugin version 0
419
+ dsw-106518-965b74ddc-cdclg:3549649:3549740 [1] NCCL INFO Using non-device net plugin version 0
420
+ dsw-106518-965b74ddc-cdclg:3549648:3549739 [0] NCCL INFO Using network Socket
421
+ dsw-106518-965b74ddc-cdclg:3549649:3549740 [1] NCCL INFO Using network Socket
422
+ dsw-106518-965b74ddc-cdclg:3549648:3549739 [0] NCCL INFO comm 0x78839c0 rank 0 nranks 2 cudaDev 0 nvmlDev 0 busId 10 commId 0x646868210b4fe2c6 - Init START
423
+ dsw-106518-965b74ddc-cdclg:3549649:3549740 [1] NCCL INFO comm 0x8e72ac0 rank 1 nranks 2 cudaDev 1 nvmlDev 1 busId 20 commId 0x646868210b4fe2c6 - Init START
424
+ dsw-106518-965b74ddc-cdclg:3549648:3549739 [0] NCCL INFO Setting affinity for GPU 0 to ffffff
425
+ dsw-106518-965b74ddc-cdclg:3549649:3549740 [1] NCCL INFO Setting affinity for GPU 1 to ffffff
426
+ dsw-106518-965b74ddc-cdclg:3549648:3549739 [0] NCCL INFO comm 0x78839c0 rank 0 nRanks 2 nNodes 1 localRanks 2 localRank 0 MNNVL 0
427
+ dsw-106518-965b74ddc-cdclg:3549649:3549740 [1] NCCL INFO comm 0x8e72ac0 rank 1 nRanks 2 nNodes 1 localRanks 2 localRank 1 MNNVL 0
428
+ dsw-106518-965b74ddc-cdclg:3549648:3549739 [0] NCCL INFO NCCL_MAX_NCHANNELS set by environment to 2.
429
+ dsw-106518-965b74ddc-cdclg:3549648:3549739 [0] NCCL INFO NCCL_MIN_NCHANNELS set by environment to 2.
430
+ dsw-106518-965b74ddc-cdclg:3549649:3549740 [1] NCCL INFO NCCL_MAX_NCHANNELS set by environment to 2.
431
+ dsw-106518-965b74ddc-cdclg:3549649:3549740 [1] NCCL INFO NCCL_MIN_NCHANNELS set by environment to 2.
432
+ dsw-106518-965b74ddc-cdclg:3549648:3549739 [0] NCCL INFO Channel 00/02 : 0 1
433
+ dsw-106518-965b74ddc-cdclg:3549648:3549739 [0] NCCL INFO Channel 01/02 : 0 1
434
+ dsw-106518-965b74ddc-cdclg:3549649:3549740 [1] NCCL INFO Trees [0] -1/-1/-1->1->0 [1] 0/-1/-1->1->-1
435
+ dsw-106518-965b74ddc-cdclg:3549648:3549739 [0] NCCL INFO Trees [0] 1/-1/-1->0->-1 [1] -1/-1/-1->0->1
436
+ dsw-106518-965b74ddc-cdclg:3549649:3549740 [1] NCCL INFO P2P Chunksize set to 524288
437
+ dsw-106518-965b74ddc-cdclg:3549648:3549739 [0] NCCL INFO P2P Chunksize set to 524288
438
+ dsw-106518-965b74ddc-cdclg:3549649:3549740 [1] NCCL INFO Channel 00/0 : 1[1] -> 0[0] via P2P/IPC/read
439
+ dsw-106518-965b74ddc-cdclg:3549648:3549739 [0] NCCL INFO Channel 00/0 : 0[0] -> 1[1] via P2P/IPC/read
440
+ dsw-106518-965b74ddc-cdclg:3549649:3549740 [1] NCCL INFO Channel 01/0 : 1[1] -> 0[0] via P2P/IPC/read
441
+ dsw-106518-965b74ddc-cdclg:3549648:3549739 [0] NCCL INFO Channel 01/0 : 0[0] -> 1[1] via P2P/IPC/read
442
+ dsw-106518-965b74ddc-cdclg:3549649:3549740 [1] NCCL INFO Connected all rings
443
+ dsw-106518-965b74ddc-cdclg:3549649:3549740 [1] NCCL INFO Connected all trees
444
+ dsw-106518-965b74ddc-cdclg:3549649:3549740 [1] NCCL INFO threadThresholds 8/8/64 | 16/8/64 | 512 | 512
445
+ dsw-106518-965b74ddc-cdclg:3549649:3549740 [1] NCCL INFO 2 coll channels, 0 collnet channels, 0 nvls channels, 2 p2p channels, 2 p2p channels per peer
446
+ dsw-106518-965b74ddc-cdclg:3549648:3549739 [0] NCCL INFO Connected all rings
447
+ dsw-106518-965b74ddc-cdclg:3549648:3549739 [0] NCCL INFO Connected all trees
448
+ dsw-106518-965b74ddc-cdclg:3549648:3549739 [0] NCCL INFO threadThresholds 8/8/64 | 16/8/64 | 512 | 512
449
+ dsw-106518-965b74ddc-cdclg:3549648:3549739 [0] NCCL INFO 2 coll channels, 0 collnet channels, 0 nvls channels, 2 p2p channels, 2 p2p channels per peer
450
+ dsw-106518-965b74ddc-cdclg:3549649:3549740 [1] NCCL INFO NCCL_LAUNCH_MODE set by environment to PARALLEL
451
+ dsw-106518-965b74ddc-cdclg:3549648:3549739 [0] NCCL INFO NCCL_LAUNCH_MODE set by environment to PARALLEL
452
+ dsw-106518-965b74ddc-cdclg:3549648:3549739 [0] NCCL INFO comm 0x78839c0 rank 0 nranks 2 cudaDev 0 nvmlDev 0 busId 10 commId 0x646868210b4fe2c6 - Init COMPLETE
453
+ dsw-106518-965b74ddc-cdclg:3549649:3549740 [1] NCCL INFO comm 0x8e72ac0 rank 1 nranks 2 cudaDev 1 nvmlDev 1 busId 20 commId 0x646868210b4fe2c6 - Init COMPLETE
454
+ [rank0]:[W1002 16:14:09.364378929 Utils.hpp:110] Warning: Environment variable NCCL_ASYNC_ERROR_HANDLING is deprecated; use TORCH_NCCL_ASYNC_ERROR_HANDLING instead (function operator())
455
+ Start new training from scratch
456
+ [rank1]:[W1002 16:14:09.364850197 Utils.hpp:110] Warning: Environment variable NCCL_ASYNC_ERROR_HANDLING is deprecated; use TORCH_NCCL_ASYNC_ERROR_HANDLING instead (function operator())
457
+ [rank0]:[W1002 16:14:16.105722831 reducer.cpp:1400] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration, which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator())
458
+ [rank1]:[W1002 16:14:16.124629939 reducer.cpp:1400] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration, which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator())
459
+ Train Summary | End of Epoch 1 | Time 1938.77s | Train Loss -5.137
460
+ Valid Summary | End of Epoch 1 | Time 127.26s | Valid Loss -8.814
461
+ Test Summary | End of Epoch 1 | Time 77.56s | Test Loss -9.161
462
+ Fund new best model, dict saved
463
+ Train Summary | End of Epoch 2 | Time 1938.88s | Train Loss -10.133
464
+ Valid Summary | End of Epoch 2 | Time 126.07s | Valid Loss -9.820
465
+ Test Summary | End of Epoch 2 | Time 75.90s | Test Loss -10.366
466
+ Fund new best model, dict saved
467
+ Train Summary | End of Epoch 3 | Time 1937.57s | Train Loss -11.814
468
+ Valid Summary | End of Epoch 3 | Time 125.85s | Valid Loss -11.866
469
+ Test Summary | End of Epoch 3 | Time 76.05s | Test Loss -11.050
470
+ Fund new best model, dict saved
471
+ Train Summary | End of Epoch 4 | Time 1931.60s | Train Loss -12.824
472
+ Valid Summary | End of Epoch 4 | Time 126.25s | Valid Loss -12.386
473
+ Test Summary | End of Epoch 4 | Time 75.53s | Test Loss -11.700
474
+ Fund new best model, dict saved
475
+ Train Summary | End of Epoch 5 | Time 1934.21s | Train Loss -13.589
476
+ Valid Summary | End of Epoch 5 | Time 126.16s | Valid Loss -13.496
477
+ Test Summary | End of Epoch 5 | Time 75.61s | Test Loss -12.582
478
+ Fund new best model, dict saved
479
+ Train Summary | End of Epoch 6 | Time 1935.56s | Train Loss -14.183
480
+ Valid Summary | End of Epoch 6 | Time 126.10s | Valid Loss -13.982
481
+ Test Summary | End of Epoch 6 | Time 75.56s | Test Loss -13.381
482
+ Fund new best model, dict saved
483
+ Train Summary | End of Epoch 7 | Time 1933.10s | Train Loss -14.677
484
+ Valid Summary | End of Epoch 7 | Time 126.04s | Valid Loss -14.077
485
+ Test Summary | End of Epoch 7 | Time 75.73s | Test Loss -13.426
486
+ Fund new best model, dict saved
487
+ Train Summary | End of Epoch 8 | Time 1933.57s | Train Loss -15.064
488
+ Valid Summary | End of Epoch 8 | Time 126.47s | Valid Loss -14.802
489
+ Test Summary | End of Epoch 8 | Time 76.01s | Test Loss -13.831
490
+ Fund new best model, dict saved
491
+ Train Summary | End of Epoch 9 | Time 1936.63s | Train Loss -15.402
492
+ Valid Summary | End of Epoch 9 | Time 125.85s | Valid Loss -15.042
493
+ Test Summary | End of Epoch 9 | Time 75.88s | Test Loss -14.217
494
+ Fund new best model, dict saved
495
+ Train Summary | End of Epoch 10 | Time 1933.70s | Train Loss -15.696
496
+ Valid Summary | End of Epoch 10 | Time 125.93s | Valid Loss -15.002
497
+ Test Summary | End of Epoch 10 | Time 75.76s | Test Loss -13.852
498
+ Train Summary | End of Epoch 11 | Time 1934.22s | Train Loss -15.956
499
+ Valid Summary | End of Epoch 11 | Time 125.82s | Valid Loss -15.403
500
+ Test Summary | End of Epoch 11 | Time 75.53s | Test Loss -14.515
501
+ Fund new best model, dict saved
502
+ Train Summary | End of Epoch 12 | Time 1934.42s | Train Loss -16.151
503
+ Valid Summary | End of Epoch 12 | Time 125.82s | Valid Loss -15.502
504
+ Test Summary | End of Epoch 12 | Time 75.47s | Test Loss -14.775
505
+ Fund new best model, dict saved
506
+ Train Summary | End of Epoch 13 | Time 1935.17s | Train Loss -16.377
507
+ Valid Summary | End of Epoch 13 | Time 125.95s | Valid Loss -15.679
508
+ Test Summary | End of Epoch 13 | Time 75.78s | Test Loss -14.593
509
+ Fund new best model, dict saved
510
+ Train Summary | End of Epoch 14 | Time 1933.74s | Train Loss -16.557
511
+ Valid Summary | End of Epoch 14 | Time 126.33s | Valid Loss -15.069
512
+ Test Summary | End of Epoch 14 | Time 76.02s | Test Loss -14.342
513
+ Train Summary | End of Epoch 15 | Time 1932.98s | Train Loss -16.746
514
+ Valid Summary | End of Epoch 15 | Time 125.66s | Valid Loss -16.075
515
+ Test Summary | End of Epoch 15 | Time 75.63s | Test Loss -14.788
516
+ Fund new best model, dict saved
517
+ Train Summary | End of Epoch 16 | Time 1935.18s | Train Loss -16.889
518
+ Valid Summary | End of Epoch 16 | Time 125.97s | Valid Loss -16.026
519
+ Test Summary | End of Epoch 16 | Time 75.36s | Test Loss -14.844
520
+ Train Summary | End of Epoch 17 | Time 1937.49s | Train Loss -17.054
521
+ Valid Summary | End of Epoch 17 | Time 126.31s | Valid Loss -16.395
522
+ Test Summary | End of Epoch 17 | Time 75.79s | Test Loss -15.114
523
+ Fund new best model, dict saved
524
+ Train Summary | End of Epoch 18 | Time 1934.17s | Train Loss -17.182
525
+ Valid Summary | End of Epoch 18 | Time 125.78s | Valid Loss -16.482
526
+ Test Summary | End of Epoch 18 | Time 75.59s | Test Loss -15.295
527
+ Fund new best model, dict saved
528
+ Train Summary | End of Epoch 19 | Time 1932.89s | Train Loss -17.311
529
+ Valid Summary | End of Epoch 19 | Time 125.77s | Valid Loss -16.488
530
+ Test Summary | End of Epoch 19 | Time 75.90s | Test Loss -15.158
531
+ Fund new best model, dict saved
532
+ Train Summary | End of Epoch 20 | Time 1935.75s | Train Loss -17.433
533
+ Valid Summary | End of Epoch 20 | Time 125.57s | Valid Loss -16.730
534
+ Test Summary | End of Epoch 20 | Time 75.65s | Test Loss -15.259
535
+ Fund new best model, dict saved
536
+ Train Summary | End of Epoch 21 | Time 1933.86s | Train Loss -17.535
537
+ Valid Summary | End of Epoch 21 | Time 125.81s | Valid Loss -16.474
538
+ Test Summary | End of Epoch 21 | Time 76.08s | Test Loss -15.619
539
+ Train Summary | End of Epoch 22 | Time 1358.25s | Train Loss -17.638
540
+ Valid Summary | End of Epoch 22 | Time 68.66s | Valid Loss -16.645
541
+ Test Summary | End of Epoch 22 | Time 38.26s | Test Loss -15.025
542
+ Train Summary | End of Epoch 23 | Time 815.45s | Train Loss -17.745
543
+ Valid Summary | End of Epoch 23 | Time 62.66s | Valid Loss -16.885
544
+ Test Summary | End of Epoch 23 | Time 38.78s | Test Loss -15.387
545
+ Fund new best model, dict saved
546
+ Train Summary | End of Epoch 24 | Time 812.33s | Train Loss -17.824
547
+ Valid Summary | End of Epoch 24 | Time 62.43s | Valid Loss -16.871
548
+ Test Summary | End of Epoch 24 | Time 38.44s | Test Loss -15.098
549
+ Train Summary | End of Epoch 25 | Time 812.85s | Train Loss -17.911
550
+ Valid Summary | End of Epoch 25 | Time 62.76s | Valid Loss -16.963
551
+ Test Summary | End of Epoch 25 | Time 38.86s | Test Loss -15.535
552
+ Fund new best model, dict saved
553
+ Train Summary | End of Epoch 26 | Time 812.48s | Train Loss -18.000
554
+ Valid Summary | End of Epoch 26 | Time 63.16s | Valid Loss -17.169
555
+ Test Summary | End of Epoch 26 | Time 38.82s | Test Loss -15.996
556
+ Fund new best model, dict saved
557
+ Train Summary | End of Epoch 27 | Time 813.20s | Train Loss -18.068
558
+ Valid Summary | End of Epoch 27 | Time 62.98s | Valid Loss -17.208
559
+ Test Summary | End of Epoch 27 | Time 38.97s | Test Loss -15.804
560
+ Fund new best model, dict saved
561
+ Train Summary | End of Epoch 28 | Time 812.99s | Train Loss -18.156
562
+ Valid Summary | End of Epoch 28 | Time 62.74s | Valid Loss -17.093
563
+ Test Summary | End of Epoch 28 | Time 38.68s | Test Loss -15.791
564
+ Train Summary | End of Epoch 29 | Time 813.21s | Train Loss -18.218
565
+ Valid Summary | End of Epoch 29 | Time 62.76s | Valid Loss -17.131
566
+ Test Summary | End of Epoch 29 | Time 38.63s | Test Loss -16.079
567
+ Train Summary | End of Epoch 30 | Time 812.77s | Train Loss -18.288
568
+ Valid Summary | End of Epoch 30 | Time 62.89s | Valid Loss -17.246
569
+ Test Summary | End of Epoch 30 | Time 39.09s | Test Loss -15.575
570
+ Fund new best model, dict saved
571
+ Train Summary | End of Epoch 31 | Time 813.24s | Train Loss -18.363
572
+ Valid Summary | End of Epoch 31 | Time 62.55s | Valid Loss -16.372
573
+ Test Summary | End of Epoch 31 | Time 38.43s | Test Loss -15.847
574
+ Train Summary | End of Epoch 32 | Time 812.31s | Train Loss -18.428
575
+ Valid Summary | End of Epoch 32 | Time 63.25s | Valid Loss -17.360
576
+ Test Summary | End of Epoch 32 | Time 38.70s | Test Loss -15.936
577
+ Fund new best model, dict saved
578
+ Train Summary | End of Epoch 33 | Time 812.89s | Train Loss -18.476
579
+ Valid Summary | End of Epoch 33 | Time 62.54s | Valid Loss -17.510
580
+ Test Summary | End of Epoch 33 | Time 38.51s | Test Loss -16.210
581
+ Fund new best model, dict saved
582
+ Train Summary | End of Epoch 34 | Time 812.46s | Train Loss -18.518
583
+ Valid Summary | End of Epoch 34 | Time 63.26s | Valid Loss -17.510
584
+ Test Summary | End of Epoch 34 | Time 39.20s | Test Loss -16.004
585
+ Fund new best model, dict saved
586
+ Train Summary | End of Epoch 35 | Time 813.37s | Train Loss -18.586
587
+ Valid Summary | End of Epoch 35 | Time 63.13s | Valid Loss -17.287
588
+ Test Summary | End of Epoch 35 | Time 38.75s | Test Loss -16.044
589
+ Train Summary | End of Epoch 36 | Time 813.24s | Train Loss -18.644
590
+ Valid Summary | End of Epoch 36 | Time 62.65s | Valid Loss -17.716
591
+ Test Summary | End of Epoch 36 | Time 38.10s | Test Loss -16.221
592
+ Fund new best model, dict saved
593
+ Train Summary | End of Epoch 37 | Time 812.83s | Train Loss -18.700
594
+ Valid Summary | End of Epoch 37 | Time 62.28s | Valid Loss -15.359
595
+ Test Summary | End of Epoch 37 | Time 38.34s | Test Loss -15.573
596
+ Train Summary | End of Epoch 38 | Time 813.20s | Train Loss -18.734
597
+ Valid Summary | End of Epoch 38 | Time 62.85s | Valid Loss -17.653
598
+ Test Summary | End of Epoch 38 | Time 38.57s | Test Loss -16.252
599
+ Train Summary | End of Epoch 39 | Time 812.63s | Train Loss -18.778
600
+ Valid Summary | End of Epoch 39 | Time 62.37s | Valid Loss -17.796
601
+ Test Summary | End of Epoch 39 | Time 38.66s | Test Loss -16.310
602
+ Fund new best model, dict saved
603
+ Train Summary | End of Epoch 40 | Time 812.81s | Train Loss -18.837
604
+ Valid Summary | End of Epoch 40 | Time 62.47s | Valid Loss -17.680
605
+ Test Summary | End of Epoch 40 | Time 38.50s | Test Loss -16.250
606
+ Train Summary | End of Epoch 41 | Time 813.08s | Train Loss -18.883
607
+ Valid Summary | End of Epoch 41 | Time 62.47s | Valid Loss -16.569
608
+ Test Summary | End of Epoch 41 | Time 38.17s | Test Loss -15.858
609
+ Train Summary | End of Epoch 42 | Time 813.25s | Train Loss -18.922
610
+ Valid Summary | End of Epoch 42 | Time 63.14s | Valid Loss -16.997
611
+ Test Summary | End of Epoch 42 | Time 38.78s | Test Loss -15.927
612
+ Train Summary | End of Epoch 43 | Time 814.01s | Train Loss -18.962
613
+ Valid Summary | End of Epoch 43 | Time 62.87s | Valid Loss -16.562
614
+ Test Summary | End of Epoch 43 | Time 38.42s | Test Loss -16.005
615
+ Train Summary | End of Epoch 44 | Time 813.39s | Train Loss -18.992
616
+ Valid Summary | End of Epoch 44 | Time 62.70s | Valid Loss -17.942
617
+ Test Summary | End of Epoch 44 | Time 38.64s | Test Loss -16.475
618
+ Fund new best model, dict saved
619
+ Train Summary | End of Epoch 45 | Time 812.79s | Train Loss -19.024
620
+ Valid Summary | End of Epoch 45 | Time 62.52s | Valid Loss -17.861
621
+ Test Summary | End of Epoch 45 | Time 38.57s | Test Loss -16.471
622
+ Train Summary | End of Epoch 46 | Time 813.03s | Train Loss -19.068
623
+ Valid Summary | End of Epoch 46 | Time 62.68s | Valid Loss -17.831
624
+ Test Summary | End of Epoch 46 | Time 38.32s | Test Loss -16.308
625
+ Train Summary | End of Epoch 47 | Time 813.93s | Train Loss -19.106
626
+ Valid Summary | End of Epoch 47 | Time 120.20s | Valid Loss -11.629
627
+ Test Summary | End of Epoch 47 | Time 85.00s | Test Loss -15.160
628
+ Train Summary | End of Epoch 48 | Time 4301.71s | Train Loss -19.142
629
+ Valid Summary | End of Epoch 48 | Time 144.13s | Valid Loss -18.040
630
+ Test Summary | End of Epoch 48 | Time 79.20s | Test Loss -16.315
631
+ Fund new best model, dict saved
632
+ Train Summary | End of Epoch 49 | Time 1939.32s | Train Loss -19.162
633
+ Valid Summary | End of Epoch 49 | Time 126.16s | Valid Loss -18.018
634
+ Test Summary | End of Epoch 49 | Time 75.46s | Test Loss -16.465
635
+ Train Summary | End of Epoch 50 | Time 1939.72s | Train Loss -19.214
636
+ Valid Summary | End of Epoch 50 | Time 126.05s | Valid Loss -18.083
637
+ Test Summary | End of Epoch 50 | Time 75.15s | Test Loss -16.414
638
+ Fund new best model, dict saved
639
+ Train Summary | End of Epoch 51 | Time 1933.84s | Train Loss -19.243
640
+ Valid Summary | End of Epoch 51 | Time 125.93s | Valid Loss -18.084
641
+ Test Summary | End of Epoch 51 | Time 75.75s | Test Loss -16.608
642
+ Fund new best model, dict saved
643
+ Train Summary | End of Epoch 52 | Time 1939.58s | Train Loss -19.278
644
+ Valid Summary | End of Epoch 52 | Time 126.17s | Valid Loss -17.739
645
+ Test Summary | End of Epoch 52 | Time 75.92s | Test Loss -16.018
646
+ Train Summary | End of Epoch 53 | Time 1939.34s | Train Loss -19.297
647
+ Valid Summary | End of Epoch 53 | Time 126.20s | Valid Loss -18.189
648
+ Test Summary | End of Epoch 53 | Time 75.89s | Test Loss -16.645
649
+ Fund new best model, dict saved
650
+ Train Summary | End of Epoch 54 | Time 1942.88s | Train Loss -19.345
651
+ Valid Summary | End of Epoch 54 | Time 126.39s | Valid Loss -18.121
652
+ Test Summary | End of Epoch 54 | Time 75.22s | Test Loss -16.255
653
+ Train Summary | End of Epoch 55 | Time 1940.59s | Train Loss -19.363
654
+ Valid Summary | End of Epoch 55 | Time 125.52s | Valid Loss -18.270
655
+ Test Summary | End of Epoch 55 | Time 75.28s | Test Loss -16.622
656
+ Fund new best model, dict saved
657
+ Train Summary | End of Epoch 56 | Time 1935.52s | Train Loss -19.391
658
+ Valid Summary | End of Epoch 56 | Time 126.14s | Valid Loss -17.902
659
+ Test Summary | End of Epoch 56 | Time 75.28s | Test Loss -16.636
660
+ Train Summary | End of Epoch 57 | Time 1947.40s | Train Loss -19.403
661
+ Valid Summary | End of Epoch 57 | Time 141.21s | Valid Loss -18.258
662
+ Test Summary | End of Epoch 57 | Time 81.67s | Test Loss -16.704
663
+ Train Summary | End of Epoch 58 | Time 1937.52s | Train Loss -19.442
664
+ Valid Summary | End of Epoch 58 | Time 125.90s | Valid Loss -18.183
665
+ Test Summary | End of Epoch 58 | Time 76.09s | Test Loss -16.447
666
+ Train Summary | End of Epoch 59 | Time 1938.74s | Train Loss -19.460
667
+ Valid Summary | End of Epoch 59 | Time 125.72s | Valid Loss -18.221
668
+ Test Summary | End of Epoch 59 | Time 75.65s | Test Loss -16.484
669
+ Train Summary | End of Epoch 60 | Time 1938.40s | Train Loss -19.510
670
+ Valid Summary | End of Epoch 60 | Time 126.54s | Valid Loss -18.143
671
+ Test Summary | End of Epoch 60 | Time 76.00s | Test Loss -16.491
672
+ reload weights and optimizer from last best checkpoint
673
+ Learning rate adjusted to: 0.000500
674
+ Train Summary | End of Epoch 61 | Time 1938.53s | Train Loss -19.653
675
+ Valid Summary | End of Epoch 61 | Time 125.69s | Valid Loss -18.524
676
+ Test Summary | End of Epoch 61 | Time 75.75s | Test Loss -16.811
677
+ Fund new best model, dict saved
678
+ Train Summary | End of Epoch 62 | Time 1935.76s | Train Loss -19.721
679
+ Valid Summary | End of Epoch 62 | Time 125.88s | Valid Loss -18.546
680
+ Test Summary | End of Epoch 62 | Time 75.65s | Test Loss -16.786
681
+ Fund new best model, dict saved
682
+ Train Summary | End of Epoch 63 | Time 1938.29s | Train Loss -19.752
683
+ Valid Summary | End of Epoch 63 | Time 126.20s | Valid Loss -18.549
684
+ Test Summary | End of Epoch 63 | Time 75.38s | Test Loss -16.896
685
+ Fund new best model, dict saved
686
+ Train Summary | End of Epoch 64 | Time 1938.66s | Train Loss -19.794
687
+ Valid Summary | End of Epoch 64 | Time 125.45s | Valid Loss -18.592
688
+ Test Summary | End of Epoch 64 | Time 75.49s | Test Loss -16.868
689
+ Fund new best model, dict saved
690
+ Train Summary | End of Epoch 65 | Time 1937.49s | Train Loss -19.819
691
+ Valid Summary | End of Epoch 65 | Time 125.89s | Valid Loss -18.524
692
+ Test Summary | End of Epoch 65 | Time 75.28s | Test Loss -16.894
693
+ Train Summary | End of Epoch 66 | Time 1936.33s | Train Loss -19.840
694
+ Valid Summary | End of Epoch 66 | Time 125.93s | Valid Loss -18.600
695
+ Test Summary | End of Epoch 66 | Time 75.42s | Test Loss -16.922
696
+ Fund new best model, dict saved
697
+ Train Summary | End of Epoch 67 | Time 1938.10s | Train Loss -19.870
698
+ Valid Summary | End of Epoch 67 | Time 125.96s | Valid Loss -18.605
699
+ Test Summary | End of Epoch 67 | Time 75.25s | Test Loss -16.973
700
+ Fund new best model, dict saved
701
+ Train Summary | End of Epoch 68 | Time 1937.18s | Train Loss -19.883
702
+ Valid Summary | End of Epoch 68 | Time 125.45s | Valid Loss -18.623
703
+ Test Summary | End of Epoch 68 | Time 75.31s | Test Loss -17.031
704
+ Fund new best model, dict saved
705
+ Train Summary | End of Epoch 69 | Time 1934.23s | Train Loss -19.902
706
+ Valid Summary | End of Epoch 69 | Time 125.81s | Valid Loss -18.522
707
+ Test Summary | End of Epoch 69 | Time 75.71s | Test Loss -16.899
708
+ Train Summary | End of Epoch 70 | Time 1937.90s | Train Loss -19.928
709
+ Valid Summary | End of Epoch 70 | Time 125.90s | Valid Loss -18.610
710
+ Test Summary | End of Epoch 70 | Time 75.16s | Test Loss -16.751
711
+ Train Summary | End of Epoch 71 | Time 1939.63s | Train Loss -19.949
712
+ Valid Summary | End of Epoch 71 | Time 126.40s | Valid Loss -18.579
713
+ Test Summary | End of Epoch 71 | Time 75.48s | Test Loss -16.833
714
+ Train Summary | End of Epoch 72 | Time 1939.05s | Train Loss -19.958
715
+ Valid Summary | End of Epoch 72 | Time 125.71s | Valid Loss -18.654
716
+ Test Summary | End of Epoch 72 | Time 75.39s | Test Loss -16.874
717
+ Fund new best model, dict saved
718
+ Train Summary | End of Epoch 73 | Time 1935.47s | Train Loss -19.978
719
+ Valid Summary | End of Epoch 73 | Time 126.41s | Valid Loss -18.638
720
+ Test Summary | End of Epoch 73 | Time 75.85s | Test Loss -16.873
721
+ Train Summary | End of Epoch 74 | Time 1937.77s | Train Loss -19.988
722
+ Valid Summary | End of Epoch 74 | Time 126.00s | Valid Loss -18.645
723
+ Test Summary | End of Epoch 74 | Time 75.82s | Test Loss -16.738
724
+ Train Summary | End of Epoch 75 | Time 1938.83s | Train Loss -20.012
725
+ Valid Summary | End of Epoch 75 | Time 125.59s | Valid Loss -18.645
726
+ Test Summary | End of Epoch 75 | Time 75.37s | Test Loss -16.910
727
+ Train Summary | End of Epoch 76 | Time 1937.47s | Train Loss -20.013
728
+ Valid Summary | End of Epoch 76 | Time 126.25s | Valid Loss -18.678
729
+ Test Summary | End of Epoch 76 | Time 73.25s | Test Loss -17.020
730
+ Fund new best model, dict saved
731
+ Train Summary | End of Epoch 77 | Time 1934.53s | Train Loss -20.033
732
+ Valid Summary | End of Epoch 77 | Time 125.89s | Valid Loss -18.653
733
+ Test Summary | End of Epoch 77 | Time 75.59s | Test Loss -16.875
734
+ Train Summary | End of Epoch 78 | Time 1939.31s | Train Loss -20.049
735
+ Valid Summary | End of Epoch 78 | Time 125.67s | Valid Loss -18.647
736
+ Test Summary | End of Epoch 78 | Time 75.40s | Test Loss -16.805
737
+ Train Summary | End of Epoch 79 | Time 1939.14s | Train Loss -20.066
738
+ Valid Summary | End of Epoch 79 | Time 125.73s | Valid Loss -18.706
739
+ Test Summary | End of Epoch 79 | Time 75.69s | Test Loss -16.929
740
+ Fund new best model, dict saved
741
+ Train Summary | End of Epoch 80 | Time 1934.85s | Train Loss -20.078
742
+ Valid Summary | End of Epoch 80 | Time 125.68s | Valid Loss -18.632
743
+ Test Summary | End of Epoch 80 | Time 75.14s | Test Loss -16.703
744
+ Train Summary | End of Epoch 81 | Time 1937.54s | Train Loss -20.091
745
+ Valid Summary | End of Epoch 81 | Time 125.79s | Valid Loss -18.727
746
+ Test Summary | End of Epoch 81 | Time 75.17s | Test Loss -16.949
747
+ Fund new best model, dict saved
748
+ Train Summary | End of Epoch 82 | Time 1940.97s | Train Loss -20.106
749
+ Valid Summary | End of Epoch 82 | Time 125.99s | Valid Loss -18.659
750
+ Test Summary | End of Epoch 82 | Time 75.62s | Test Loss -16.828
751
+ Train Summary | End of Epoch 83 | Time 1940.60s | Train Loss -20.111
752
+ Valid Summary | End of Epoch 83 | Time 125.86s | Valid Loss -18.713
753
+ Test Summary | End of Epoch 83 | Time 75.38s | Test Loss -16.985
754
+ Train Summary | End of Epoch 84 | Time 1934.57s | Train Loss -20.121
755
+ Valid Summary | End of Epoch 84 | Time 126.02s | Valid Loss -18.723
756
+ Test Summary | End of Epoch 84 | Time 75.73s | Test Loss -16.886
757
+ Train Summary | End of Epoch 85 | Time 1939.74s | Train Loss -20.136
758
+ Valid Summary | End of Epoch 85 | Time 138.39s | Valid Loss -18.691
759
+ Test Summary | End of Epoch 85 | Time 80.10s | Test Loss -16.823
760
+ Train Summary | End of Epoch 86 | Time 1937.70s | Train Loss -20.150
761
+ Valid Summary | End of Epoch 86 | Time 125.96s | Valid Loss -18.710
762
+ Test Summary | End of Epoch 86 | Time 75.33s | Test Loss -16.945
763
+ reload weights and optimizer from last best checkpoint
764
+ Learning rate adjusted to: 0.000250
765
+ Train Summary | End of Epoch 87 | Time 1937.52s | Train Loss -20.204
766
+ Valid Summary | End of Epoch 87 | Time 125.28s | Valid Loss -18.809
767
+ Test Summary | End of Epoch 87 | Time 75.78s | Test Loss -16.972
768
+ Fund new best model, dict saved
769
+ Train Summary | End of Epoch 88 | Time 1938.42s | Train Loss -20.240
770
+ Valid Summary | End of Epoch 88 | Time 125.41s | Valid Loss -18.818
771
+ Test Summary | End of Epoch 88 | Time 75.98s | Test Loss -17.035
772
+ Fund new best model, dict saved
773
+ Train Summary | End of Epoch 89 | Time 1939.54s | Train Loss -20.249
774
+ Valid Summary | End of Epoch 89 | Time 126.38s | Valid Loss -18.812
775
+ Test Summary | End of Epoch 89 | Time 76.28s | Test Loss -16.910
776
+ Train Summary | End of Epoch 90 | Time 1945.55s | Train Loss -20.267
777
+ Valid Summary | End of Epoch 90 | Time 126.46s | Valid Loss -18.806
778
+ Test Summary | End of Epoch 90 | Time 75.42s | Test Loss -16.897
779
+ Train Summary | End of Epoch 91 | Time 1949.44s | Train Loss -20.279
780
+ Valid Summary | End of Epoch 91 | Time 124.58s | Valid Loss -18.810
781
+ Test Summary | End of Epoch 91 | Time 75.95s | Test Loss -16.901
782
+ Train Summary | End of Epoch 92 | Time 1941.30s | Train Loss -20.293
783
+ Valid Summary | End of Epoch 92 | Time 124.42s | Valid Loss -18.809
784
+ Test Summary | End of Epoch 92 | Time 75.64s | Test Loss -16.954
785
+ Train Summary | End of Epoch 93 | Time 1941.58s | Train Loss -20.297
786
+ Valid Summary | End of Epoch 93 | Time 125.85s | Valid Loss -18.787
787
+ Test Summary | End of Epoch 93 | Time 75.74s | Test Loss -16.888
788
+ reload weights and optimizer from last best checkpoint
789
+ Learning rate adjusted to: 0.000125
790
+ Train Summary | End of Epoch 94 | Time 1942.52s | Train Loss -20.291
791
+ Valid Summary | End of Epoch 94 | Time 273.14s | Valid Loss -18.839
792
+ Test Summary | End of Epoch 94 | Time 162.06s | Test Loss -17.012
793
+ Fund new best model, dict saved
794
+ Train Summary | End of Epoch 95 | Time 1985.76s | Train Loss -20.312
795
+ Valid Summary | End of Epoch 95 | Time 228.44s | Valid Loss -18.840
796
+ Test Summary | End of Epoch 95 | Time 155.77s | Test Loss -17.009
797
+ Fund new best model, dict saved
798
+ Train Summary | End of Epoch 96 | Time 2972.21s | Train Loss -20.316
799
+ Valid Summary | End of Epoch 96 | Time 210.59s | Valid Loss -9.387
800
+ Start evaluation
801
+ Avg SISNR:i tensor([17.1080], device='cuda:0')
802
+ Avg SNRi: 17.45552202765349
803
+ Avg STOIi: 0.21840867744715423
checkpoints/log_wsj0-2mix_speech_SpEx-plus_2spk/tensorboard/events.out.tfevents.1727856848.dsw-106518-965b74ddc-cdclg.3549648.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1932d6a2ebf5f030cf4bc8a3367376ccb0346d292c57480ab66f1c59043454f4
3
+ size 14148