algoprog commited on
Commit
a7e4fb9
·
verified ·
1 Parent(s): 906dc81

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -110
README.md CHANGED
@@ -9,119 +9,18 @@ tags:
9
 
10
  ---
11
 
12
- # {MODEL_NAME}
13
 
14
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
15
 
16
  <!--- Describe your model here -->
17
 
18
- ## Usage (Sentence-Transformers)
19
-
20
- Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
21
-
22
- ```
23
- pip install -U sentence-transformers
24
- ```
25
-
26
- Then you can use the model like this:
27
-
28
- ```python
29
- from sentence_transformers import SentenceTransformer
30
- sentences = ["This is an example sentence", "Each sentence is converted"]
31
-
32
- model = SentenceTransformer('{MODEL_NAME}')
33
- embeddings = model.encode(sentences)
34
- print(embeddings)
35
- ```
36
-
37
-
38
-
39
- ## Usage (HuggingFace Transformers)
40
- Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
41
-
42
- ```python
43
- from transformers import AutoTokenizer, AutoModel
44
- import torch
45
-
46
-
47
- def cls_pooling(model_output, attention_mask):
48
- return model_output[0][:,0]
49
-
50
-
51
- # Sentences we want sentence embeddings for
52
- sentences = ['This is an example sentence', 'Each sentence is converted']
53
-
54
- # Load model from HuggingFace Hub
55
- tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
56
- model = AutoModel.from_pretrained('{MODEL_NAME}')
57
-
58
- # Tokenize sentences
59
- encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
60
-
61
- # Compute token embeddings
62
- with torch.no_grad():
63
- model_output = model(**encoded_input)
64
-
65
- # Perform pooling. In this case, cls pooling.
66
- sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])
67
-
68
- print("Sentence embeddings:")
69
- print(sentence_embeddings)
70
- ```
71
-
72
-
73
-
74
- ## Evaluation Results
75
-
76
- <!--- Describe how your model was evaluated -->
77
-
78
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
79
-
80
-
81
- ## Training
82
- The model was trained with the parameters:
83
-
84
- **DataLoader**:
85
-
86
- `torch.utils.data.dataloader.DataLoader` of length 55614 with parameters:
87
- ```
88
- {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
89
- ```
90
-
91
- **Loss**:
92
-
93
- `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
94
- ```
95
- {'scale': 20.0, 'similarity_fct': 'dot_score'}
96
- ```
97
-
98
- Parameters of the fit()-Method:
99
  ```
100
- {
101
- "epochs": 10,
102
- "evaluation_steps": 2000,
103
- "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
104
- "max_grad_norm": 1,
105
- "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
106
- "optimizer_params": {
107
- "lr": 2e-05
108
- },
109
- "scheduler": "WarmupLinear",
110
- "steps_per_epoch": null,
111
- "warmup_steps": 1000,
112
- "weight_decay": 0.01
113
  }
114
- ```
115
-
116
-
117
- ## Full Model Architecture
118
- ```
119
- SentenceTransformer(
120
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
121
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
122
- )
123
- ```
124
-
125
- ## Citing & Authors
126
-
127
- <!--- Describe where people can find more information -->
 
9
 
10
  ---
11
 
12
+ # ANCE ProCIS
13
 
14
+ This is a [sentence-transformers](https://www.SBERT.net) model based on DistilBERT: It maps conversations and passages to dense embeddings for retrieval in the context of conversations. It's trained on the [ProCIS dataset](https://github.com/algoprog/ProCIS).
15
 
16
  <!--- Describe your model here -->
17
 
18
+ ## Citing & Authors
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  ```
20
+ @article{Anonymous_2024_ProCIS,
21
+ title = {ProCIS: A Benchmark for Proactive Retrieval in Conversations},
22
+ author = {},
23
+ journal = {Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval},
24
+ year = {2024}
 
 
 
 
 
 
 
 
25
  }
26
+ ```