program(1.3) [buildInfo = dict({{"coremlc-component-MIL", "3402.3.2"}, {"coremlc-version", "3402.4.1"}, {"coremltools-component-torch", "2.5.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.2"}})] { func main(tensor hidden_states) { tensor var_5 = const()[name = string("op_5"), val = tensor([0, 2, 1])]; tensor input_axes_0 = const()[name = string("input_axes_0"), val = tensor([2])]; tensor var_6_cast_fp16 = transpose(perm = var_5, x = hidden_states)[name = string("transpose_8")]; tensor input_cast_fp16 = expand_dims(axes = input_axes_0, x = var_6_cast_fp16)[name = string("input_cast_fp16")]; string var_29_pad_type_0 = const()[name = string("op_29_pad_type_0"), val = string("valid")]; tensor var_29_strides_0 = const()[name = string("op_29_strides_0"), val = tensor([1, 1])]; tensor var_29_pad_0 = const()[name = string("op_29_pad_0"), val = tensor([0, 0, 0, 0])]; tensor var_29_dilations_0 = const()[name = string("op_29_dilations_0"), val = tensor([1, 1])]; int32 var_29_groups_0 = const()[name = string("op_29_groups_0"), val = int32(1)]; tensor var_9_promoted_to_fp16 = const()[name = string("op_9_promoted_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(64)))]; tensor var_29_cast_fp16 = conv(dilations = var_29_dilations_0, groups = var_29_groups_0, pad = var_29_pad_0, pad_type = var_29_pad_type_0, strides = var_29_strides_0, weight = var_9_promoted_to_fp16, x = input_cast_fp16)[name = string("op_29_cast_fp16")]; tensor var_31_axes_0 = const()[name = string("op_31_axes_0"), val = tensor([2])]; tensor var_31_cast_fp16 = squeeze(axes = var_31_axes_0, x = var_29_cast_fp16)[name = string("op_31_cast_fp16")]; tensor var_34_perm_0 = const()[name = string("op_34_perm_0"), val = tensor([0, 2, 1])]; string var_55_pad_type_0 = const()[name = string("op_55_pad_type_0"), val = string("valid")]; tensor var_55_strides_0 = const()[name = string("op_55_strides_0"), val = tensor([1, 1])]; tensor var_55_pad_0 = const()[name = string("op_55_pad_0"), val = tensor([0, 0, 0, 0])]; tensor var_55_dilations_0 = const()[name = string("op_55_dilations_0"), val = tensor([1, 1])]; int32 var_55_groups_0 = const()[name = string("op_55_groups_0"), val = int32(1)]; tensor var_35_promoted_to_fp16 = const()[name = string("op_35_promoted_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(65667200)))]; tensor var_55_cast_fp16 = conv(dilations = var_55_dilations_0, groups = var_55_groups_0, pad = var_55_pad_0, pad_type = var_55_pad_type_0, strides = var_55_strides_0, weight = var_35_promoted_to_fp16, x = input_cast_fp16)[name = string("op_55_cast_fp16")]; tensor var_57_axes_0 = const()[name = string("op_57_axes_0"), val = tensor([2])]; tensor var_57_cast_fp16 = squeeze(axes = var_57_axes_0, x = var_55_cast_fp16)[name = string("op_57_cast_fp16")]; tensor var_60_perm_0 = const()[name = string("op_60_perm_0"), val = tensor([0, 2, 1])]; string var_81_pad_type_0 = const()[name = string("op_81_pad_type_0"), val = string("valid")]; tensor var_81_strides_0 = const()[name = string("op_81_strides_0"), val = tensor([1, 1])]; tensor var_81_pad_0 = const()[name = string("op_81_pad_0"), val = tensor([0, 0, 0, 0])]; tensor var_81_dilations_0 = const()[name = string("op_81_dilations_0"), val = tensor([1, 1])]; int32 var_81_groups_0 = const()[name = string("op_81_groups_0"), val = int32(1)]; tensor var_61_promoted_to_fp16 = const()[name = string("op_61_promoted_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(131334336)))]; tensor var_81_cast_fp16 = conv(dilations = var_81_dilations_0, groups = var_81_groups_0, pad = var_81_pad_0, pad_type = var_81_pad_type_0, strides = var_81_strides_0, weight = var_61_promoted_to_fp16, x = input_cast_fp16)[name = string("op_81_cast_fp16")]; tensor var_83_axes_0 = const()[name = string("op_83_axes_0"), val = tensor([2])]; tensor var_83_cast_fp16 = squeeze(axes = var_83_axes_0, x = var_81_cast_fp16)[name = string("op_83_cast_fp16")]; tensor var_86_perm_0 = const()[name = string("op_86_perm_0"), val = tensor([0, 2, 1])]; string var_107_pad_type_0 = const()[name = string("op_107_pad_type_0"), val = string("valid")]; tensor var_107_strides_0 = const()[name = string("op_107_strides_0"), val = tensor([1, 1])]; tensor var_107_pad_0 = const()[name = string("op_107_pad_0"), val = tensor([0, 0, 0, 0])]; tensor var_107_dilations_0 = const()[name = string("op_107_dilations_0"), val = tensor([1, 1])]; int32 var_107_groups_0 = const()[name = string("op_107_groups_0"), val = int32(1)]; tensor var_87_promoted_to_fp16 = const()[name = string("op_87_promoted_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(197001472)))]; tensor var_107_cast_fp16 = conv(dilations = var_107_dilations_0, groups = var_107_groups_0, pad = var_107_pad_0, pad_type = var_107_pad_type_0, strides = var_107_strides_0, weight = var_87_promoted_to_fp16, x = input_cast_fp16)[name = string("op_107_cast_fp16")]; tensor var_109_axes_0 = const()[name = string("op_109_axes_0"), val = tensor([2])]; tensor var_109_cast_fp16 = squeeze(axes = var_109_axes_0, x = var_107_cast_fp16)[name = string("op_109_cast_fp16")]; tensor var_112_perm_0 = const()[name = string("op_112_perm_0"), val = tensor([0, 2, 1])]; string var_133_pad_type_0 = const()[name = string("op_133_pad_type_0"), val = string("valid")]; tensor var_133_strides_0 = const()[name = string("op_133_strides_0"), val = tensor([1, 1])]; tensor var_133_pad_0 = const()[name = string("op_133_pad_0"), val = tensor([0, 0, 0, 0])]; tensor var_133_dilations_0 = const()[name = string("op_133_dilations_0"), val = tensor([1, 1])]; int32 var_133_groups_0 = const()[name = string("op_133_groups_0"), val = int32(1)]; tensor var_113_promoted_to_fp16 = const()[name = string("op_113_promoted_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(262668608)))]; tensor var_133_cast_fp16 = conv(dilations = var_133_dilations_0, groups = var_133_groups_0, pad = var_133_pad_0, pad_type = var_133_pad_type_0, strides = var_133_strides_0, weight = var_113_promoted_to_fp16, x = input_cast_fp16)[name = string("op_133_cast_fp16")]; tensor var_135_axes_0 = const()[name = string("op_135_axes_0"), val = tensor([2])]; tensor var_135_cast_fp16 = squeeze(axes = var_135_axes_0, x = var_133_cast_fp16)[name = string("op_135_cast_fp16")]; tensor var_138_perm_0 = const()[name = string("op_138_perm_0"), val = tensor([0, 2, 1])]; string var_159_pad_type_0 = const()[name = string("op_159_pad_type_0"), val = string("valid")]; tensor var_159_strides_0 = const()[name = string("op_159_strides_0"), val = tensor([1, 1])]; tensor var_159_pad_0 = const()[name = string("op_159_pad_0"), val = tensor([0, 0, 0, 0])]; tensor var_159_dilations_0 = const()[name = string("op_159_dilations_0"), val = tensor([1, 1])]; int32 var_159_groups_0 = const()[name = string("op_159_groups_0"), val = int32(1)]; tensor var_139_promoted_to_fp16 = const()[name = string("op_139_promoted_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(328335744)))]; tensor var_159_cast_fp16 = conv(dilations = var_159_dilations_0, groups = var_159_groups_0, pad = var_159_pad_0, pad_type = var_159_pad_type_0, strides = var_159_strides_0, weight = var_139_promoted_to_fp16, x = input_cast_fp16)[name = string("op_159_cast_fp16")]; tensor var_161_axes_0 = const()[name = string("op_161_axes_0"), val = tensor([2])]; tensor var_161_cast_fp16 = squeeze(axes = var_161_axes_0, x = var_159_cast_fp16)[name = string("op_161_cast_fp16")]; tensor var_164_perm_0 = const()[name = string("op_164_perm_0"), val = tensor([0, 2, 1])]; string var_185_pad_type_0 = const()[name = string("op_185_pad_type_0"), val = string("valid")]; tensor var_185_strides_0 = const()[name = string("op_185_strides_0"), val = tensor([1, 1])]; tensor var_185_pad_0 = const()[name = string("op_185_pad_0"), val = tensor([0, 0, 0, 0])]; tensor var_185_dilations_0 = const()[name = string("op_185_dilations_0"), val = tensor([1, 1])]; int32 var_185_groups_0 = const()[name = string("op_185_groups_0"), val = int32(1)]; tensor var_165_promoted_to_fp16 = const()[name = string("op_165_promoted_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(394002880)))]; tensor var_185_cast_fp16 = conv(dilations = var_185_dilations_0, groups = var_185_groups_0, pad = var_185_pad_0, pad_type = var_185_pad_type_0, strides = var_185_strides_0, weight = var_165_promoted_to_fp16, x = input_cast_fp16)[name = string("op_185_cast_fp16")]; tensor var_187_axes_0 = const()[name = string("op_187_axes_0"), val = tensor([2])]; tensor var_187_cast_fp16 = squeeze(axes = var_187_axes_0, x = var_185_cast_fp16)[name = string("op_187_cast_fp16")]; tensor var_190_perm_0 = const()[name = string("op_190_perm_0"), val = tensor([0, 2, 1])]; string var_211_pad_type_0 = const()[name = string("op_211_pad_type_0"), val = string("valid")]; tensor var_211_strides_0 = const()[name = string("op_211_strides_0"), val = tensor([1, 1])]; tensor var_211_pad_0 = const()[name = string("op_211_pad_0"), val = tensor([0, 0, 0, 0])]; tensor var_211_dilations_0 = const()[name = string("op_211_dilations_0"), val = tensor([1, 1])]; int32 var_211_groups_0 = const()[name = string("op_211_groups_0"), val = int32(1)]; tensor var_191_promoted_to_fp16 = const()[name = string("op_191_promoted_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(459670016)))]; tensor var_211_cast_fp16 = conv(dilations = var_211_dilations_0, groups = var_211_groups_0, pad = var_211_pad_0, pad_type = var_211_pad_type_0, strides = var_211_strides_0, weight = var_191_promoted_to_fp16, x = input_cast_fp16)[name = string("op_211_cast_fp16")]; tensor var_213_axes_0 = const()[name = string("op_213_axes_0"), val = tensor([2])]; tensor var_213_cast_fp16 = squeeze(axes = var_213_axes_0, x = var_211_cast_fp16)[name = string("op_213_cast_fp16")]; tensor var_216_perm_0 = const()[name = string("op_216_perm_0"), val = tensor([0, 2, 1])]; tensor logits8 = transpose(perm = var_216_perm_0, x = var_213_cast_fp16)[name = string("transpose_0")]; tensor logits7 = transpose(perm = var_190_perm_0, x = var_187_cast_fp16)[name = string("transpose_1")]; tensor logits6 = transpose(perm = var_164_perm_0, x = var_161_cast_fp16)[name = string("transpose_2")]; tensor logits5 = transpose(perm = var_138_perm_0, x = var_135_cast_fp16)[name = string("transpose_3")]; tensor logits4 = transpose(perm = var_112_perm_0, x = var_109_cast_fp16)[name = string("transpose_4")]; tensor logits3 = transpose(perm = var_86_perm_0, x = var_83_cast_fp16)[name = string("transpose_5")]; tensor logits2 = transpose(perm = var_60_perm_0, x = var_57_cast_fp16)[name = string("transpose_6")]; tensor logits1 = transpose(perm = var_34_perm_0, x = var_31_cast_fp16)[name = string("transpose_7")]; } -> (logits1, logits2, logits3, logits4, logits5, logits6, logits7, logits8); }