[ { "shortDescription" : "Anemll Model (LM Head) converted to CoreML", "metadataOutputVersion" : "3.0", "outputSchema" : [ { "hasShapeFlexibility" : "0", "isOptional" : "0", "dataType" : "Float16", "formattedType" : "MultiArray (Float16 1 × 1 × 16032)", "shortDescription" : "", "shape" : "[1, 1, 16032]", "name" : "logits1", "type" : "MultiArray" }, { "hasShapeFlexibility" : "0", "isOptional" : "0", "dataType" : "Float16", "formattedType" : "MultiArray (Float16 1 × 1 × 16032)", "shortDescription" : "", "shape" : "[1, 1, 16032]", "name" : "logits2", "type" : "MultiArray" }, { "hasShapeFlexibility" : "0", "isOptional" : "0", "dataType" : "Float16", "formattedType" : "MultiArray (Float16 1 × 1 × 16032)", "shortDescription" : "", "shape" : "[1, 1, 16032]", "name" : "logits3", "type" : "MultiArray" }, { "hasShapeFlexibility" : "0", "isOptional" : "0", "dataType" : "Float16", "formattedType" : "MultiArray (Float16 1 × 1 × 16032)", "shortDescription" : "", "shape" : "[1, 1, 16032]", "name" : "logits4", "type" : "MultiArray" }, { "hasShapeFlexibility" : "0", "isOptional" : "0", "dataType" : "Float16", "formattedType" : "MultiArray (Float16 1 × 1 × 16032)", "shortDescription" : "", "shape" : "[1, 1, 16032]", "name" : "logits5", "type" : "MultiArray" }, { "hasShapeFlexibility" : "0", "isOptional" : "0", "dataType" : "Float16", "formattedType" : "MultiArray (Float16 1 × 1 × 16032)", "shortDescription" : "", "shape" : "[1, 1, 16032]", "name" : "logits6", "type" : "MultiArray" }, { "hasShapeFlexibility" : "0", "isOptional" : "0", "dataType" : "Float16", "formattedType" : "MultiArray (Float16 1 × 1 × 16032)", "shortDescription" : "", "shape" : "[1, 1, 16032]", "name" : "logits7", "type" : "MultiArray" }, { "hasShapeFlexibility" : "0", "isOptional" : "0", "dataType" : "Float16", "formattedType" : "MultiArray (Float16 1 × 1 × 16032)", "shortDescription" : "", "shape" : "[1, 1, 16032]", "name" : "logits8", "type" : "MultiArray" } ], "version" : "0.1.2", "modelParameters" : [ ], "author" : "Converted with Anemll v0.1.2", "specificationVersion" : 9, "storagePrecision" : "Float16", "mlProgramOperationTypeHistogram" : { "Ios18.transpose" : 9, "Ios18.expandDims" : 1, "Ios18.conv" : 8, "Ios18.squeeze" : 8 }, "computePrecision" : "Mixed (Float16, Int32)", "stateSchema" : [ ], "isUpdatable" : "0", "availability" : { "macOS" : "15.0", "tvOS" : "18.0", "visionOS" : "2.0", "watchOS" : "11.0", "iOS" : "18.0", "macCatalyst" : "18.0" }, "modelType" : { "name" : "MLModelType_mlProgram" }, "inputSchema" : [ { "hasShapeFlexibility" : "0", "isOptional" : "0", "dataType" : "Float16", "formattedType" : "MultiArray (Float16 1 × 1 × 2048)", "shortDescription" : "", "shape" : "[1, 1, 2048]", "name" : "hidden_states", "type" : "MultiArray" } ], "userDefinedMetadata" : { "com.anemll.context_length" : "512", "com.github.apple.coremltools.version" : "8.2", "com.anemll.lut_bits" : "6", "com.github.apple.coremltools.source" : "torch==2.5.0", "com.anemll.info" : "Converted with Anemll v0.1.2", "com.github.apple.coremltools.source_dialect" : "TorchScript" }, "generatedClassName" : "llama_lm_head_lut6", "method" : "predict" } ]