alexgusevski's picture
Upload model
6bfa10d verified
program(1.3)
[buildInfo = dict<string, string>({{"coremlc-component-MIL", "3402.3.2"}, {"coremlc-version", "3402.4.1"}, {"coremltools-component-torch", "2.5.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.2"}})]
{
func main<ios18>(tensor<fp16, [1, 1, 2048]> hidden_states) {
tensor<int32, [3]> var_5 = const()[name = string("op_5"), val = tensor<int32, [3]>([0, 2, 1])];
tensor<int32, [1]> input_axes_0 = const()[name = string("input_axes_0"), val = tensor<int32, [1]>([2])];
tensor<fp16, [1, 2048, 1]> var_6_cast_fp16 = transpose(perm = var_5, x = hidden_states)[name = string("transpose_8")];
tensor<fp16, [1, 2048, 1, 1]> input_cast_fp16 = expand_dims(axes = input_axes_0, x = var_6_cast_fp16)[name = string("input_cast_fp16")];
string var_29_pad_type_0 = const()[name = string("op_29_pad_type_0"), val = string("valid")];
tensor<int32, [2]> var_29_strides_0 = const()[name = string("op_29_strides_0"), val = tensor<int32, [2]>([1, 1])];
tensor<int32, [4]> var_29_pad_0 = const()[name = string("op_29_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
tensor<int32, [2]> var_29_dilations_0 = const()[name = string("op_29_dilations_0"), val = tensor<int32, [2]>([1, 1])];
int32 var_29_groups_0 = const()[name = string("op_29_groups_0"), val = int32(1)];
tensor<fp16, [16032, 2048, 1, 1]> var_9_promoted_to_fp16 = const()[name = string("op_9_promoted_to_fp16"), val = tensor<fp16, [16032, 2048, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(64)))];
tensor<fp16, [1, 16032, 1, 1]> var_29_cast_fp16 = conv(dilations = var_29_dilations_0, groups = var_29_groups_0, pad = var_29_pad_0, pad_type = var_29_pad_type_0, strides = var_29_strides_0, weight = var_9_promoted_to_fp16, x = input_cast_fp16)[name = string("op_29_cast_fp16")];
tensor<int32, [1]> var_31_axes_0 = const()[name = string("op_31_axes_0"), val = tensor<int32, [1]>([2])];
tensor<fp16, [1, 16032, 1]> var_31_cast_fp16 = squeeze(axes = var_31_axes_0, x = var_29_cast_fp16)[name = string("op_31_cast_fp16")];
tensor<int32, [3]> var_34_perm_0 = const()[name = string("op_34_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
string var_55_pad_type_0 = const()[name = string("op_55_pad_type_0"), val = string("valid")];
tensor<int32, [2]> var_55_strides_0 = const()[name = string("op_55_strides_0"), val = tensor<int32, [2]>([1, 1])];
tensor<int32, [4]> var_55_pad_0 = const()[name = string("op_55_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
tensor<int32, [2]> var_55_dilations_0 = const()[name = string("op_55_dilations_0"), val = tensor<int32, [2]>([1, 1])];
int32 var_55_groups_0 = const()[name = string("op_55_groups_0"), val = int32(1)];
tensor<fp16, [16032, 2048, 1, 1]> var_35_promoted_to_fp16 = const()[name = string("op_35_promoted_to_fp16"), val = tensor<fp16, [16032, 2048, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(65667200)))];
tensor<fp16, [1, 16032, 1, 1]> var_55_cast_fp16 = conv(dilations = var_55_dilations_0, groups = var_55_groups_0, pad = var_55_pad_0, pad_type = var_55_pad_type_0, strides = var_55_strides_0, weight = var_35_promoted_to_fp16, x = input_cast_fp16)[name = string("op_55_cast_fp16")];
tensor<int32, [1]> var_57_axes_0 = const()[name = string("op_57_axes_0"), val = tensor<int32, [1]>([2])];
tensor<fp16, [1, 16032, 1]> var_57_cast_fp16 = squeeze(axes = var_57_axes_0, x = var_55_cast_fp16)[name = string("op_57_cast_fp16")];
tensor<int32, [3]> var_60_perm_0 = const()[name = string("op_60_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
string var_81_pad_type_0 = const()[name = string("op_81_pad_type_0"), val = string("valid")];
tensor<int32, [2]> var_81_strides_0 = const()[name = string("op_81_strides_0"), val = tensor<int32, [2]>([1, 1])];
tensor<int32, [4]> var_81_pad_0 = const()[name = string("op_81_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
tensor<int32, [2]> var_81_dilations_0 = const()[name = string("op_81_dilations_0"), val = tensor<int32, [2]>([1, 1])];
int32 var_81_groups_0 = const()[name = string("op_81_groups_0"), val = int32(1)];
tensor<fp16, [16032, 2048, 1, 1]> var_61_promoted_to_fp16 = const()[name = string("op_61_promoted_to_fp16"), val = tensor<fp16, [16032, 2048, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(131334336)))];
tensor<fp16, [1, 16032, 1, 1]> var_81_cast_fp16 = conv(dilations = var_81_dilations_0, groups = var_81_groups_0, pad = var_81_pad_0, pad_type = var_81_pad_type_0, strides = var_81_strides_0, weight = var_61_promoted_to_fp16, x = input_cast_fp16)[name = string("op_81_cast_fp16")];
tensor<int32, [1]> var_83_axes_0 = const()[name = string("op_83_axes_0"), val = tensor<int32, [1]>([2])];
tensor<fp16, [1, 16032, 1]> var_83_cast_fp16 = squeeze(axes = var_83_axes_0, x = var_81_cast_fp16)[name = string("op_83_cast_fp16")];
tensor<int32, [3]> var_86_perm_0 = const()[name = string("op_86_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
string var_107_pad_type_0 = const()[name = string("op_107_pad_type_0"), val = string("valid")];
tensor<int32, [2]> var_107_strides_0 = const()[name = string("op_107_strides_0"), val = tensor<int32, [2]>([1, 1])];
tensor<int32, [4]> var_107_pad_0 = const()[name = string("op_107_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
tensor<int32, [2]> var_107_dilations_0 = const()[name = string("op_107_dilations_0"), val = tensor<int32, [2]>([1, 1])];
int32 var_107_groups_0 = const()[name = string("op_107_groups_0"), val = int32(1)];
tensor<fp16, [16032, 2048, 1, 1]> var_87_promoted_to_fp16 = const()[name = string("op_87_promoted_to_fp16"), val = tensor<fp16, [16032, 2048, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(197001472)))];
tensor<fp16, [1, 16032, 1, 1]> var_107_cast_fp16 = conv(dilations = var_107_dilations_0, groups = var_107_groups_0, pad = var_107_pad_0, pad_type = var_107_pad_type_0, strides = var_107_strides_0, weight = var_87_promoted_to_fp16, x = input_cast_fp16)[name = string("op_107_cast_fp16")];
tensor<int32, [1]> var_109_axes_0 = const()[name = string("op_109_axes_0"), val = tensor<int32, [1]>([2])];
tensor<fp16, [1, 16032, 1]> var_109_cast_fp16 = squeeze(axes = var_109_axes_0, x = var_107_cast_fp16)[name = string("op_109_cast_fp16")];
tensor<int32, [3]> var_112_perm_0 = const()[name = string("op_112_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
string var_133_pad_type_0 = const()[name = string("op_133_pad_type_0"), val = string("valid")];
tensor<int32, [2]> var_133_strides_0 = const()[name = string("op_133_strides_0"), val = tensor<int32, [2]>([1, 1])];
tensor<int32, [4]> var_133_pad_0 = const()[name = string("op_133_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
tensor<int32, [2]> var_133_dilations_0 = const()[name = string("op_133_dilations_0"), val = tensor<int32, [2]>([1, 1])];
int32 var_133_groups_0 = const()[name = string("op_133_groups_0"), val = int32(1)];
tensor<fp16, [16032, 2048, 1, 1]> var_113_promoted_to_fp16 = const()[name = string("op_113_promoted_to_fp16"), val = tensor<fp16, [16032, 2048, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(262668608)))];
tensor<fp16, [1, 16032, 1, 1]> var_133_cast_fp16 = conv(dilations = var_133_dilations_0, groups = var_133_groups_0, pad = var_133_pad_0, pad_type = var_133_pad_type_0, strides = var_133_strides_0, weight = var_113_promoted_to_fp16, x = input_cast_fp16)[name = string("op_133_cast_fp16")];
tensor<int32, [1]> var_135_axes_0 = const()[name = string("op_135_axes_0"), val = tensor<int32, [1]>([2])];
tensor<fp16, [1, 16032, 1]> var_135_cast_fp16 = squeeze(axes = var_135_axes_0, x = var_133_cast_fp16)[name = string("op_135_cast_fp16")];
tensor<int32, [3]> var_138_perm_0 = const()[name = string("op_138_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
string var_159_pad_type_0 = const()[name = string("op_159_pad_type_0"), val = string("valid")];
tensor<int32, [2]> var_159_strides_0 = const()[name = string("op_159_strides_0"), val = tensor<int32, [2]>([1, 1])];
tensor<int32, [4]> var_159_pad_0 = const()[name = string("op_159_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
tensor<int32, [2]> var_159_dilations_0 = const()[name = string("op_159_dilations_0"), val = tensor<int32, [2]>([1, 1])];
int32 var_159_groups_0 = const()[name = string("op_159_groups_0"), val = int32(1)];
tensor<fp16, [16032, 2048, 1, 1]> var_139_promoted_to_fp16 = const()[name = string("op_139_promoted_to_fp16"), val = tensor<fp16, [16032, 2048, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(328335744)))];
tensor<fp16, [1, 16032, 1, 1]> var_159_cast_fp16 = conv(dilations = var_159_dilations_0, groups = var_159_groups_0, pad = var_159_pad_0, pad_type = var_159_pad_type_0, strides = var_159_strides_0, weight = var_139_promoted_to_fp16, x = input_cast_fp16)[name = string("op_159_cast_fp16")];
tensor<int32, [1]> var_161_axes_0 = const()[name = string("op_161_axes_0"), val = tensor<int32, [1]>([2])];
tensor<fp16, [1, 16032, 1]> var_161_cast_fp16 = squeeze(axes = var_161_axes_0, x = var_159_cast_fp16)[name = string("op_161_cast_fp16")];
tensor<int32, [3]> var_164_perm_0 = const()[name = string("op_164_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
string var_185_pad_type_0 = const()[name = string("op_185_pad_type_0"), val = string("valid")];
tensor<int32, [2]> var_185_strides_0 = const()[name = string("op_185_strides_0"), val = tensor<int32, [2]>([1, 1])];
tensor<int32, [4]> var_185_pad_0 = const()[name = string("op_185_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
tensor<int32, [2]> var_185_dilations_0 = const()[name = string("op_185_dilations_0"), val = tensor<int32, [2]>([1, 1])];
int32 var_185_groups_0 = const()[name = string("op_185_groups_0"), val = int32(1)];
tensor<fp16, [16032, 2048, 1, 1]> var_165_promoted_to_fp16 = const()[name = string("op_165_promoted_to_fp16"), val = tensor<fp16, [16032, 2048, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(394002880)))];
tensor<fp16, [1, 16032, 1, 1]> var_185_cast_fp16 = conv(dilations = var_185_dilations_0, groups = var_185_groups_0, pad = var_185_pad_0, pad_type = var_185_pad_type_0, strides = var_185_strides_0, weight = var_165_promoted_to_fp16, x = input_cast_fp16)[name = string("op_185_cast_fp16")];
tensor<int32, [1]> var_187_axes_0 = const()[name = string("op_187_axes_0"), val = tensor<int32, [1]>([2])];
tensor<fp16, [1, 16032, 1]> var_187_cast_fp16 = squeeze(axes = var_187_axes_0, x = var_185_cast_fp16)[name = string("op_187_cast_fp16")];
tensor<int32, [3]> var_190_perm_0 = const()[name = string("op_190_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
string var_211_pad_type_0 = const()[name = string("op_211_pad_type_0"), val = string("valid")];
tensor<int32, [2]> var_211_strides_0 = const()[name = string("op_211_strides_0"), val = tensor<int32, [2]>([1, 1])];
tensor<int32, [4]> var_211_pad_0 = const()[name = string("op_211_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
tensor<int32, [2]> var_211_dilations_0 = const()[name = string("op_211_dilations_0"), val = tensor<int32, [2]>([1, 1])];
int32 var_211_groups_0 = const()[name = string("op_211_groups_0"), val = int32(1)];
tensor<fp16, [16032, 2048, 1, 1]> var_191_promoted_to_fp16 = const()[name = string("op_191_promoted_to_fp16"), val = tensor<fp16, [16032, 2048, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(459670016)))];
tensor<fp16, [1, 16032, 1, 1]> var_211_cast_fp16 = conv(dilations = var_211_dilations_0, groups = var_211_groups_0, pad = var_211_pad_0, pad_type = var_211_pad_type_0, strides = var_211_strides_0, weight = var_191_promoted_to_fp16, x = input_cast_fp16)[name = string("op_211_cast_fp16")];
tensor<int32, [1]> var_213_axes_0 = const()[name = string("op_213_axes_0"), val = tensor<int32, [1]>([2])];
tensor<fp16, [1, 16032, 1]> var_213_cast_fp16 = squeeze(axes = var_213_axes_0, x = var_211_cast_fp16)[name = string("op_213_cast_fp16")];
tensor<int32, [3]> var_216_perm_0 = const()[name = string("op_216_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
tensor<fp16, [1, 1, 16032]> logits8 = transpose(perm = var_216_perm_0, x = var_213_cast_fp16)[name = string("transpose_0")];
tensor<fp16, [1, 1, 16032]> logits7 = transpose(perm = var_190_perm_0, x = var_187_cast_fp16)[name = string("transpose_1")];
tensor<fp16, [1, 1, 16032]> logits6 = transpose(perm = var_164_perm_0, x = var_161_cast_fp16)[name = string("transpose_2")];
tensor<fp16, [1, 1, 16032]> logits5 = transpose(perm = var_138_perm_0, x = var_135_cast_fp16)[name = string("transpose_3")];
tensor<fp16, [1, 1, 16032]> logits4 = transpose(perm = var_112_perm_0, x = var_109_cast_fp16)[name = string("transpose_4")];
tensor<fp16, [1, 1, 16032]> logits3 = transpose(perm = var_86_perm_0, x = var_83_cast_fp16)[name = string("transpose_5")];
tensor<fp16, [1, 1, 16032]> logits2 = transpose(perm = var_60_perm_0, x = var_57_cast_fp16)[name = string("transpose_6")];
tensor<fp16, [1, 1, 16032]> logits1 = transpose(perm = var_34_perm_0, x = var_31_cast_fp16)[name = string("transpose_7")];
} -> (logits1, logits2, logits3, logits4, logits5, logits6, logits7, logits8);
}