program(1.3) [buildInfo = dict({{"coremlc-component-MIL", "3402.3.2"}, {"coremlc-version", "3402.4.1"}, {"coremltools-component-torch", "2.5.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.2"}})] { func main(tensor input_ids) [FlexibleShapeInformation = tuple>>, tuple>>>>((("DefaultShapes", {{"input_ids", [1, 1]}}), ("EnumeratedShapes", {{"79ae981e", {{"input_ids", [1, 1]}}}, {"ed9b58c8", {{"input_ids", [1, 64]}}}})))] { int32 hidden_states_axis_0 = const()[name = string("hidden_states_axis_0"), val = int32(0)]; int32 hidden_states_batch_dims_0 = const()[name = string("hidden_states_batch_dims_0"), val = int32(0)]; bool hidden_states_validate_indices_0 = const()[name = string("hidden_states_validate_indices_0"), val = bool(false)]; tensor embed_tokens_weight_to_fp16 = const()[name = string("embed_tokens_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(64)))]; tensor hidden_states = gather(axis = hidden_states_axis_0, batch_dims = hidden_states_batch_dims_0, indices = input_ids, validate_indices = hidden_states_validate_indices_0, x = embed_tokens_weight_to_fp16)[name = string("hidden_states_cast_fp16")]; } -> (hidden_states); }