File size: 1,426 Bytes
dd7b8bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
---
license: other
license_name: qwen-research
license_link: https://huggingface.co/Qwen/Qwen2.5-3B/blob/main/LICENSE
datasets:
- OpenCoder-LLM/opc-sft-stage1
- OpenCoder-LLM/opc-sft-stage2
- microsoft/orca-agentinstruct-1M-v1
- microsoft/orca-math-word-problems-200k
- NousResearch/hermes-function-calling-v1
- AI-MO/NuminaMath-CoT
- AI-MO/NuminaMath-TIR
- allenai/tulu-3-sft-mixture
- cognitivecomputations/dolphin-coder
- HuggingFaceTB/smoltalk
- cognitivecomputations/samantha-data
- m-a-p/CodeFeedback-Filtered-Instruction
- m-a-p/Code-Feedback
language:
- en
base_model: cognitivecomputations/Dolphin3.0-Qwen2.5-3b
tags:
- mlx
---

# alexgusevski/Dolphin3.0-Qwen2.5-3b-q6-mlx

The Model [alexgusevski/Dolphin3.0-Qwen2.5-3b-q6-mlx](https://huggingface.co/alexgusevski/Dolphin3.0-Qwen2.5-3b-q6-mlx) was
converted to MLX format from [cognitivecomputations/Dolphin3.0-Qwen2.5-3b](https://huggingface.co/cognitivecomputations/Dolphin3.0-Qwen2.5-3b)
using mlx-lm version **0.21.4**.

## Use with mlx

```bash
pip install mlx-lm
```

```python
from mlx_lm import load, generate

model, tokenizer = load("alexgusevski/Dolphin3.0-Qwen2.5-3b-q6-mlx")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
```