Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 265.76 +/- 17.52
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ad89b69c3a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ad89b69c430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ad89b69c4c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ad89b69c550>", "_build": "<function ActorCriticPolicy._build at 0x7ad89b69c5e0>", "forward": "<function ActorCriticPolicy.forward at 0x7ad89b69c670>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ad89b69c700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ad89b69c790>", "_predict": "<function ActorCriticPolicy._predict at 0x7ad89b69c820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ad89b69c8b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ad89b69c940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ad89b69c9d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ad89b84f680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 164960, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1706096112724211994, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAD6371J1gE/A7pIPoAofL4U+Bc9JpF/PAAAAAAAAAAAgEkLvQNCcz+m79o8UBzLvmA4br09N1U9AAAAAAAAAADNnXi9Hzv4u5ueKTz+zAI8G3lXPQ7S6LwAAIA/AACAPwbVSj4+kbg/Ln8SP/Enq756K48+HXqZPgAAAAAAAAAAGqApPUhcsj4+wx++76KQvop8ab1eRvO8AAAAAAAAAACaqZI9b/8lPyQMPb2hLpe+n6+yPDrBjr0AAAAAAAAAADNLLLw3y3k/mkUIvATsp74hqco7Zk5JvQAAAAAAAAAAZlT3vHzdKD2Ly1U9m1aTvj1X/DrYgjS9AAAAAAAAAACopIq+PqtUP1JTqz2WMJm+6A1Yvqbwcz4AAAAAAAAAAAAeJL4M1DU/A59RPSPenr6C64m9Pl7rPAAAAAAAAAAAmru1vNLKqT/N8aO9wDS0vjNlGb3KxGe8AAAAAAAAAAAAulS9w7WFP65wDb5Sucq+4m0JvU5wE70AAAAAAAAAACYDxz2VJzE/M3qLvRyhtL4G9ZA9pgABPAAAAAAAAAAAZhKbvFzXbbrO8IA6EQt6NanpCjsjBZe5AACAPwAAgD9mlZS8MWlJPvanJj5UaJ6+QrZhPfhIdzsAAAAAAAAAADMjM7tPYGK8JsTVPJ4K273Rt008Pw+FvAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.83616, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDS3jyWiUSMAWyUTUUBjAF0lEdAmBiYTPBzm3V9lChoBkdAcUpiMo+fRWgHTUMBaAhHQJgZte+mFal1fZQoaAZHQHLra9bor4FoB002AWgIR0CYGm66reZYdX2UKGgGR0BPECKBNEgGaAdL1mgIR0CYGzz7di2EdX2UKGgGR0BvDfNu+AVgaAdNLQFoCEdAmBtJZW7vonV9lChoBkdAcUdTIeYD1WgHTdsBaAhHQJgcA/wAlv91fZQoaAZHQHEFLCFbmltoB01YAWgIR0CYHUvphWo4dX2UKGgGR0ByNbV5KODKaAdNcAFoCEdAmB1at1ZDA3V9lChoBkdAcPxLCN0eVGgHTScBaAhHQJgdl2s7uD11fZQoaAZHQHFQklRgqmVoB00WAWgIR0CYHeXN1QqJdX2UKGgGR0ByPkyEcsDoaAdNEAFoCEdAmB3pX+2mYXV9lChoBkdAbOVRWLgn+mgHTS8BaAhHQJgezg0j1PF1fZQoaAZHQG5y53Tuv2ZoB01FAWgIR0CYIM4zabnYdX2UKGgGR0BxdL1g6U7kaAdNAAFoCEdAmCDWzByjpXV9lChoBkdAbfBRgJC0GGgHTTIBaAhHQJghLFS88Ld1fZQoaAZHQHPZNyHVPN5oB00iAWgIR0CYIXWp6yB1dX2UKGgGR0Bv5Bh+fAbiaAdNEwFoCEdAmCLjKHO8kHV9lChoBkdAcZlc0Ltu1mgHTQ0BaAhHQJgj6LxZuAJ1fZQoaAZHQHGoJiZv1lJoB00mAWgIR0CYJEpudf9hdX2UKGgGR0Bw2Nxp+MIeaAdNIAFoCEdAmCUfR/mT1XV9lChoBkdAcbiWGRFI/mgHTS8BaAhHQJgmMnhKlHl1fZQoaAZHQHH0DKT0QK9oB00fAWgIR0CYJptVrAP/dX2UKGgGR0ByfyhzvJA/aAdNKgFoCEdAmCdAQL/jsHV9lChoBkdAbvvhE0BOpWgHTSQBaAhHQJgnSmUGFBZ1fZQoaAZHQHAWNuLrHENoB008AWgIR0CYJ7lhw2l3dX2UKGgGR0BxHPKr7wazaAdNMAFoCEdAmCe4sVclgXV9lChoBkdAcF0UI9kjHGgHTXMBaAhHQJgn/aYeDFt1fZQoaAZHQHH3KagElmhoB01MAWgIR0CYKUjBEa2ndX2UKGgGR0BxzOWWyC4CaAdL/WgIR0CYKa5jpcHGdX2UKGgGR0BwxaG/N7jUaAdNEAFoCEdAmCnzh5xBFHV9lChoBkdAc0IAymALA2gHTRwBaAhHQJgp8PK+zt11fZQoaAZHQHHJqY/mknFoB01XAWgIR0CYK6fICEHudX2UKGgGR0BwgcXAM2FWaAdNFAFoCEdAmCyvVurIYHV9lChoBkdAcYjyDIzWPWgHTT8BaAhHQJgtFYlpoK51fZQoaAZHQG3hVvl2eQNoB00AAWgIR0CYLTuPmxMWdX2UKGgGR0Bxu4+aBqbjaAdNQQFoCEdAmC6N16mfoXV9lChoBkdAcbYPRiPQwGgHTQIBaAhHQJgus3Mpw0h1fZQoaAZHQHBXUjgQ6IZoB00aAWgIR0CYLyaWX1J2dX2UKGgGR0BwrZ0r9VFQaAdNCAFoCEdAmC9/seGO/HV9lChoBkdAbg2Fdszl92gHTRQBaAhHQJgv1hjOLR91fZQoaAZHQG0Ew2MsH0NoB00KAWgIR0CYL+3juKGddX2UKGgGR0ByyN45cTrWaAdNKQFoCEdAmEGLKJVKgHV9lChoBkdAcnLl8PWhAWgHTS4BaAhHQJhB8ZLqUvB1fZQoaAZHQHBBLilzltFoB00tAWgIR0CYQzda+vhZdX2UKGgGR0BxHB2ovSMMaAdNIQFoCEdAmEN3QID5kHV9lChoBkdAckBRF7Uoa2gHTToBaAhHQJhD8F8ohIR1fZQoaAZHQHMH6p5u63BoB01TAWgIR0CYRO/9Hc1wdX2UKGgGR0BvBo9LYf4iaAdNFwFoCEdAmEYGO+7DmHV9lChoBkdAcQyvhZQpF2gHTTcBaAhHQJhGAzuWrwR1fZQoaAZHQHGCh9b5dnloB00vAWgIR0CYR5Hpr1ujdX2UKGgGR0BxeDXXiBGyaAdNMgFoCEdAmEf/LX+VDHV9lChoBkdAcOCvze40/GgHTSUBaAhHQJhJPvCuU2V1fZQoaAZHQHCCmtQsPJ9oB00MAWgIR0CYSW8gIQe4dX2UKGgGR0BxIZIxxkupaAdNLgFoCEdAmEnlgDzRQnV9lChoBkdAcKkDmbLEDWgHTSYBaAhHQJhKGl3yI551fZQoaAZHQHDf0mx+rlxoB00bAWgIR0CYSrLOzIFNdX2UKGgGR0BxwZBNVR1paAdNHwFoCEdAmErBoVVPvnV9lChoBkdAcdW6Zpi7TWgHTQ8BaAhHQJhLc6bONYN1fZQoaAZHQHGKJuMuOCJoB00yAWgIR0CYTaN9H+ZPdX2UKGgGR0BudDjBEa2naAdNEAFoCEdAmE4g2Q4jr3V9lChoBkdAb/LBQemvXGgHTTcBaAhHQJhP8zMzMzN1fZQoaAZHQE8DeMyad+ZoB0vIaAhHQJhQe6XjU/h1fZQoaAZHQHFKxxT850doB005AWgIR0CYUJaUiY9gdX2UKGgGR0BwCCattALRaAdNOAFoCEdAmFGiBPKuCHV9lChoBkdAbwqkona37WgHS/xoCEdAmFHvoePq93V9lChoBkdAbz9p5eJHiGgHTSEBaAhHQJhR+dhAnlZ1fZQoaAZHQG6hOjynUDxoB00uAWgIR0CYUldQwblzdX2UKGgGR0A3N+Haews5aAdL52gIR0CYUq47A+INdX2UKGgGR0Bx8shW5paiaAdNIgFoCEdAmFQQ2dd3S3V9lChoBkdAcnkebutwJmgHTSIBaAhHQJhUlc+qzZ91fZQoaAZHQG+P3jENvwVoB00WAWgIR0CYVKoRIz3zdX2UKGgGR0Bu/9yYG+sYaAdNKgFoCEdAmFVE/nnuA3V9lChoBkdAcCffYzzmOmgHTREBaAhHQJhWmaBqbjN1fZQoaAZHQHL/COWBz3hoB02XAWgIR0CYV6xiobXIdX2UKGgGR0Bx+bzUZvUCaAdNZQFoCEdAmFe6ab4Ju3V9lChoBkdAcSt9K28Zk2gHTTABaAhHQJhX85NoJzF1fZQoaAZHQHEamH+IdlxoB00WAWgIR0CYWJzLOiWWdX2UKGgGR0BxV3MW43FUaAdNAQFoCEdAmFnf1L8JlnV9lChoBkdAcSIiPQv6CWgHTTIBaAhHQJhZ/xy4nWt1fZQoaAZHQHHnZ84PwuxoB00BAWgIR0CYWkwIMSbpdX2UKGgGR0BxBwByS3b3aAdNGwFoCEdAmFqyeI2wV3V9lChoBkdAcZfaPS2H+WgHTScBaAhHQJhazwpe/pN1fZQoaAZHQG3yjWTX8O1oB01MAWgIR0CYWu2X9itrdX2UKGgGR0Bwqww22oegaAdNGgFoCEdAmFtgieNDMXV9lChoBkdAcu5c4o7V8WgHS/1oCEdAmFviCWeHz3V9lChoBkdAck1NQj2SMmgHTSoBaAhHQJhdz2K2rn11fZQoaAZHQHGxnfVI7NloB00zAWgIR0CYXgXgLqlhdX2UKGgGR0BvsCGQCCBgaAdNNAFoCEdAmF7IldC3PXV9lChoBkdAcLebp/wy7GgHTScBaAhHQJhfwyfthNN1fZQoaAZHQHEEcBuGbkRoB0v9aAhHQJhgc2Q4jr11fZQoaAZHQHHfNx6v7nBoB00zAWgIR0CYYWJyQxN7dX2UKGgGR0BxLyUiY9gXaAdNLgFoCEdAmGFy5AhStXV9lChoBkdAcfBDR+jM3mgHTToBaAhHQJhhj3Zf2K51fZQoaAZHQG0VqLsKLKpoB00MAWgIR0CYYqHck+otdX2UKGgGR0Bw1J9ph4MXaAdNIQFoCEdAmGMDByjpLXV9lChoBkdAcrMeii7Ci2gHTS4BaAhHQJh0YaCL/CJ1fZQoaAZHQHMmaoqCpWFoB00bAWgIR0CYdMd9Ujs2dX2UKGgGR0Bxvcx7AtWdaAdNKgFoCEdAmHUdHlOoHnV9lChoBkdAcCnxZuAI6mgHTToBaAhHQJh1eBxxT851fZQoaAZHQHGHQm3OObRoB00oAWgIR0CYdakWAPNFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 288, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d5d7d7a92511ffffe602e25e3eb1bca2d5d6f721d5f4666034c9648a3c84ac4
|
3 |
+
size 148045
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ad89b69c3a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ad89b69c430>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ad89b69c4c0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ad89b69c550>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ad89b69c5e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ad89b69c670>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7ad89b69c700>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ad89b69c790>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ad89b69c820>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ad89b69c8b0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ad89b69c940>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ad89b69c9d0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ad89b84f680>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 164960,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1706096112724211994,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAD6371J1gE/A7pIPoAofL4U+Bc9JpF/PAAAAAAAAAAAgEkLvQNCcz+m79o8UBzLvmA4br09N1U9AAAAAAAAAADNnXi9Hzv4u5ueKTz+zAI8G3lXPQ7S6LwAAIA/AACAPwbVSj4+kbg/Ln8SP/Enq756K48+HXqZPgAAAAAAAAAAGqApPUhcsj4+wx++76KQvop8ab1eRvO8AAAAAAAAAACaqZI9b/8lPyQMPb2hLpe+n6+yPDrBjr0AAAAAAAAAADNLLLw3y3k/mkUIvATsp74hqco7Zk5JvQAAAAAAAAAAZlT3vHzdKD2Ly1U9m1aTvj1X/DrYgjS9AAAAAAAAAACopIq+PqtUP1JTqz2WMJm+6A1Yvqbwcz4AAAAAAAAAAAAeJL4M1DU/A59RPSPenr6C64m9Pl7rPAAAAAAAAAAAmru1vNLKqT/N8aO9wDS0vjNlGb3KxGe8AAAAAAAAAAAAulS9w7WFP65wDb5Sucq+4m0JvU5wE70AAAAAAAAAACYDxz2VJzE/M3qLvRyhtL4G9ZA9pgABPAAAAAAAAAAAZhKbvFzXbbrO8IA6EQt6NanpCjsjBZe5AACAPwAAgD9mlZS8MWlJPvanJj5UaJ6+QrZhPfhIdzsAAAAAAAAAADMjM7tPYGK8JsTVPJ4K273Rt008Pw+FvAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": 0.83616,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDS3jyWiUSMAWyUTUUBjAF0lEdAmBiYTPBzm3V9lChoBkdAcUpiMo+fRWgHTUMBaAhHQJgZte+mFal1fZQoaAZHQHLra9bor4FoB002AWgIR0CYGm66reZYdX2UKGgGR0BPECKBNEgGaAdL1mgIR0CYGzz7di2EdX2UKGgGR0BvDfNu+AVgaAdNLQFoCEdAmBtJZW7vonV9lChoBkdAcUdTIeYD1WgHTdsBaAhHQJgcA/wAlv91fZQoaAZHQHEFLCFbmltoB01YAWgIR0CYHUvphWo4dX2UKGgGR0ByNbV5KODKaAdNcAFoCEdAmB1at1ZDA3V9lChoBkdAcPxLCN0eVGgHTScBaAhHQJgdl2s7uD11fZQoaAZHQHFQklRgqmVoB00WAWgIR0CYHeXN1QqJdX2UKGgGR0ByPkyEcsDoaAdNEAFoCEdAmB3pX+2mYXV9lChoBkdAbOVRWLgn+mgHTS8BaAhHQJgezg0j1PF1fZQoaAZHQG5y53Tuv2ZoB01FAWgIR0CYIM4zabnYdX2UKGgGR0BxdL1g6U7kaAdNAAFoCEdAmCDWzByjpXV9lChoBkdAbfBRgJC0GGgHTTIBaAhHQJghLFS88Ld1fZQoaAZHQHPZNyHVPN5oB00iAWgIR0CYIXWp6yB1dX2UKGgGR0Bv5Bh+fAbiaAdNEwFoCEdAmCLjKHO8kHV9lChoBkdAcZlc0Ltu1mgHTQ0BaAhHQJgj6LxZuAJ1fZQoaAZHQHGoJiZv1lJoB00mAWgIR0CYJEpudf9hdX2UKGgGR0Bw2Nxp+MIeaAdNIAFoCEdAmCUfR/mT1XV9lChoBkdAcbiWGRFI/mgHTS8BaAhHQJgmMnhKlHl1fZQoaAZHQHH0DKT0QK9oB00fAWgIR0CYJptVrAP/dX2UKGgGR0ByfyhzvJA/aAdNKgFoCEdAmCdAQL/jsHV9lChoBkdAbvvhE0BOpWgHTSQBaAhHQJgnSmUGFBZ1fZQoaAZHQHAWNuLrHENoB008AWgIR0CYJ7lhw2l3dX2UKGgGR0BxHPKr7wazaAdNMAFoCEdAmCe4sVclgXV9lChoBkdAcF0UI9kjHGgHTXMBaAhHQJgn/aYeDFt1fZQoaAZHQHH3KagElmhoB01MAWgIR0CYKUjBEa2ndX2UKGgGR0BxzOWWyC4CaAdL/WgIR0CYKa5jpcHGdX2UKGgGR0BwxaG/N7jUaAdNEAFoCEdAmCnzh5xBFHV9lChoBkdAc0IAymALA2gHTRwBaAhHQJgp8PK+zt11fZQoaAZHQHHJqY/mknFoB01XAWgIR0CYK6fICEHudX2UKGgGR0BwgcXAM2FWaAdNFAFoCEdAmCyvVurIYHV9lChoBkdAcYjyDIzWPWgHTT8BaAhHQJgtFYlpoK51fZQoaAZHQG3hVvl2eQNoB00AAWgIR0CYLTuPmxMWdX2UKGgGR0Bxu4+aBqbjaAdNQQFoCEdAmC6N16mfoXV9lChoBkdAcbYPRiPQwGgHTQIBaAhHQJgus3Mpw0h1fZQoaAZHQHBXUjgQ6IZoB00aAWgIR0CYLyaWX1J2dX2UKGgGR0BwrZ0r9VFQaAdNCAFoCEdAmC9/seGO/HV9lChoBkdAbg2Fdszl92gHTRQBaAhHQJgv1hjOLR91fZQoaAZHQG0Ew2MsH0NoB00KAWgIR0CYL+3juKGddX2UKGgGR0ByyN45cTrWaAdNKQFoCEdAmEGLKJVKgHV9lChoBkdAcnLl8PWhAWgHTS4BaAhHQJhB8ZLqUvB1fZQoaAZHQHBBLilzltFoB00tAWgIR0CYQzda+vhZdX2UKGgGR0BxHB2ovSMMaAdNIQFoCEdAmEN3QID5kHV9lChoBkdAckBRF7Uoa2gHTToBaAhHQJhD8F8ohIR1fZQoaAZHQHMH6p5u63BoB01TAWgIR0CYRO/9Hc1wdX2UKGgGR0BvBo9LYf4iaAdNFwFoCEdAmEYGO+7DmHV9lChoBkdAcQyvhZQpF2gHTTcBaAhHQJhGAzuWrwR1fZQoaAZHQHGCh9b5dnloB00vAWgIR0CYR5Hpr1ujdX2UKGgGR0BxeDXXiBGyaAdNMgFoCEdAmEf/LX+VDHV9lChoBkdAcOCvze40/GgHTSUBaAhHQJhJPvCuU2V1fZQoaAZHQHCCmtQsPJ9oB00MAWgIR0CYSW8gIQe4dX2UKGgGR0BxIZIxxkupaAdNLgFoCEdAmEnlgDzRQnV9lChoBkdAcKkDmbLEDWgHTSYBaAhHQJhKGl3yI551fZQoaAZHQHDf0mx+rlxoB00bAWgIR0CYSrLOzIFNdX2UKGgGR0BxwZBNVR1paAdNHwFoCEdAmErBoVVPvnV9lChoBkdAcdW6Zpi7TWgHTQ8BaAhHQJhLc6bONYN1fZQoaAZHQHGKJuMuOCJoB00yAWgIR0CYTaN9H+ZPdX2UKGgGR0BudDjBEa2naAdNEAFoCEdAmE4g2Q4jr3V9lChoBkdAb/LBQemvXGgHTTcBaAhHQJhP8zMzMzN1fZQoaAZHQE8DeMyad+ZoB0vIaAhHQJhQe6XjU/h1fZQoaAZHQHFKxxT850doB005AWgIR0CYUJaUiY9gdX2UKGgGR0BwCCattALRaAdNOAFoCEdAmFGiBPKuCHV9lChoBkdAbwqkona37WgHS/xoCEdAmFHvoePq93V9lChoBkdAbz9p5eJHiGgHTSEBaAhHQJhR+dhAnlZ1fZQoaAZHQG6hOjynUDxoB00uAWgIR0CYUldQwblzdX2UKGgGR0A3N+Haews5aAdL52gIR0CYUq47A+INdX2UKGgGR0Bx8shW5paiaAdNIgFoCEdAmFQQ2dd3S3V9lChoBkdAcnkebutwJmgHTSIBaAhHQJhUlc+qzZ91fZQoaAZHQG+P3jENvwVoB00WAWgIR0CYVKoRIz3zdX2UKGgGR0Bu/9yYG+sYaAdNKgFoCEdAmFVE/nnuA3V9lChoBkdAcCffYzzmOmgHTREBaAhHQJhWmaBqbjN1fZQoaAZHQHL/COWBz3hoB02XAWgIR0CYV6xiobXIdX2UKGgGR0Bx+bzUZvUCaAdNZQFoCEdAmFe6ab4Ju3V9lChoBkdAcSt9K28Zk2gHTTABaAhHQJhX85NoJzF1fZQoaAZHQHEamH+IdlxoB00WAWgIR0CYWJzLOiWWdX2UKGgGR0BxV3MW43FUaAdNAQFoCEdAmFnf1L8JlnV9lChoBkdAcSIiPQv6CWgHTTIBaAhHQJhZ/xy4nWt1fZQoaAZHQHHnZ84PwuxoB00BAWgIR0CYWkwIMSbpdX2UKGgGR0BxBwByS3b3aAdNGwFoCEdAmFqyeI2wV3V9lChoBkdAcZfaPS2H+WgHTScBaAhHQJhazwpe/pN1fZQoaAZHQG3yjWTX8O1oB01MAWgIR0CYWu2X9itrdX2UKGgGR0Bwqww22oegaAdNGgFoCEdAmFtgieNDMXV9lChoBkdAcu5c4o7V8WgHS/1oCEdAmFviCWeHz3V9lChoBkdAck1NQj2SMmgHTSoBaAhHQJhdz2K2rn11fZQoaAZHQHGxnfVI7NloB00zAWgIR0CYXgXgLqlhdX2UKGgGR0BvsCGQCCBgaAdNNAFoCEdAmF7IldC3PXV9lChoBkdAcLebp/wy7GgHTScBaAhHQJhfwyfthNN1fZQoaAZHQHEEcBuGbkRoB0v9aAhHQJhgc2Q4jr11fZQoaAZHQHHfNx6v7nBoB00zAWgIR0CYYWJyQxN7dX2UKGgGR0BxLyUiY9gXaAdNLgFoCEdAmGFy5AhStXV9lChoBkdAcfBDR+jM3mgHTToBaAhHQJhhj3Zf2K51fZQoaAZHQG0VqLsKLKpoB00MAWgIR0CYYqHck+otdX2UKGgGR0Bw1J9ph4MXaAdNIQFoCEdAmGMDByjpLXV9lChoBkdAcrMeii7Ci2gHTS4BaAhHQJh0YaCL/CJ1fZQoaAZHQHMmaoqCpWFoB00bAWgIR0CYdMd9Ujs2dX2UKGgGR0Bxvcx7AtWdaAdNKgFoCEdAmHUdHlOoHnV9lChoBkdAcCnxZuAI6mgHTToBaAhHQJh1eBxxT851fZQoaAZHQHGHQm3OObRoB00oAWgIR0CYdakWAPNFdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 288,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c2695c2c4d71a09e1a3c1f2d8b45ec3a50f5743ce63db751058d14e597ed57b6
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:491bfc5578c48a7c9558e42f8b6e38bcb821a970741b112be9e884ea9f4643ce
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (186 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 265.75863899999996, "std_reward": 17.524797691698186, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-01-24T11:44:57.321548"}
|