alefarasin
commited on
Commit
·
5729581
1
Parent(s):
7231d3b
Upload unit1 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 171.66 +/- 105.59
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5025ebc5f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5025ebc680>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5025ebc710>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5025ebc7a0>", "_build": "<function ActorCriticPolicy._build at 0x7f5025ebc830>", "forward": "<function ActorCriticPolicy.forward at 0x7f5025ebc8c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5025ebc950>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5025ebc9e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5025ebca70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5025ebcb00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5025ebcb90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5025f0a660>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652034207.7962823, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACBrvj6PVjM/XvsnPORt/L6A9VA+f+DFvQAAAAAAAAAAzWRtuylEbLrjbdy66+BDtg7w7zqWPfw5AACAPwAAgD+aqB29XBsGuigrgLtA1dk36rpJuyKeNjoAAIA/AACAP2b+pj1cy166DumNO3dZkjZyCJe6hS+jugAAgD8AAIA/bdMGPuFwubqyyiW8+oRJOPMXUrrSihw5AACAPwAAgD/NUuW8rumButlMLzxrJ361S1b8uUuLbLQAAIA/AACAPwDuQj3Xo325tVEGPJvqajZ7loU7AhhqNQAAgD8AAIA/ptqtPVwTR7oxYza7VezRtU6AyjrYilQ6AACAPwAAgD/t4mg+uPf5u95ikDshthy5bO5kvf6Cp7oAAIA/AACAPxZ6U76dgt4+Fty1uuP+Pb563Lm9rjWtvQAAAAAAAAAAOgQKvqRpHbuBVDc74RDCvLw0dzyqHag9AACAPwAAAAAtvge+kTQlPw6LSD16vKW+A/OwvbbbrDwAAAAAAAAAAAC1pj2UcUw/pmJrPXOv874a1Hc9jiabvQAAAAAAAAAAJkGEPVzbBrqeOdm5f6iBtsgGWDumX/A1AACAPwAAgD9GE4U+xUNmPxVR1j7n6yi/qQaSPiG6jj0AAAAAAAAAAA2ooD2PVj669VzDumYimbZufW45TdLeOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVYxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITb9EvHVYY0CUhpRSlIwBbJRN6AOMAXSUR0B6PP655JK8dX2UKGgGaAloD0MI63JKQEzuWECUhpRSlGgVTegDaBZHQHpI/wuuiex1fZQoaAZoCWgPQwhI+Um1zz5jQJSGlFKUaBVN6ANoFkdAelELQXyiEnV9lChoBmgJaA9DCFGlZg+0q2BAlIaUUpRoFU3oA2gWR0B6VmdjG1hLdX2UKGgGaAloD0MIzy7f+jCIY0CUhpRSlGgVTegDaBZHQHpcCMDOkcl1fZQoaAZoCWgPQwiHpuz0g0xgQJSGlFKUaBVN6ANoFkdAel/SfDk2gnV9lChoBmgJaA9DCOBNt+wQ2zVAlIaUUpRoFUuZaBZHQHpqpkf9xZN1fZQoaAZoCWgPQwiGWP0RhjVuQJSGlFKUaBVNlwFoFkdAemzk8A7xNXV9lChoBmgJaA9DCM9pFmj3sGNAlIaUUpRoFU3oA2gWR0B6dDR/mT1TdX2UKGgGaAloD0MIzo3pCUtkO0CUhpRSlGgVS/FoFkdAeofdWhh6SnV9lChoBmgJaA9DCIPeG0MAIC7AlIaUUpRoFU01AWgWR0B6kb5+H8CQdX2UKGgGaAloD0MIAWn/A6xNY0CUhpRSlGgVTegDaBZHQHqUV2icoYx1fZQoaAZoCWgPQwiDTZ1HxalDwJSGlFKUaBVLpGgWR0B6llN9H+ZPdX2UKGgGaAloD0MIEDy+vevPZECUhpRSlGgVTegDaBZHQHrx2tITXat1fZQoaAZoCWgPQwj8OQX5Wd1gQJSGlFKUaBVN6ANoFkdAewZ/p+tr9HV9lChoBmgJaA9DCGr4FtaNhzVAlIaUUpRoFUu9aBZHQHsKVo11nul1fZQoaAZoCWgPQwj4GRcOhKBgQJSGlFKUaBVN6ANoFkdAeyL/Q0GeMHV9lChoBmgJaA9DCOiGpuz0Z1RAlIaUUpRoFU3oA2gWR0B7LG+8Gs3idX2UKGgGaAloD0MIOZz51ZwhY0CUhpRSlGgVTegDaBZHQHs6YsiB5HF1fZQoaAZoCWgPQwh7Z7RVyS5kQJSGlFKUaBVN6ANoFkdAez6wW3z+WHV9lChoBmgJaA9DCDrObcI9R21AlIaUUpRoFUvmaBZHQHs/hzq8lHB1fZQoaAZoCWgPQwiAft+/eYRRQJSGlFKUaBVN6ANoFkdAe1E1s+FDfHV9lChoBmgJaA9DCFJjQswltRDAlIaUUpRoFUuoaBZHQHtg+scQyyl1fZQoaAZoCWgPQwidDmQ9tdFeQJSGlFKUaBVN6ANoFkdAe2RhakhzNnV9lChoBmgJaA9DCNI1k282kmFAlIaUUpRoFU3oA2gWR0B7gZC6Ymb9dX2UKGgGaAloD0MIPneC/VepYUCUhpRSlGgVTegDaBZHQHuFyx3V0911fZQoaAZoCWgPQwjIJ2TnbcwFwJSGlFKUaBVLqWgWR0B7is5aNdZ8dX2UKGgGaAloD0MIuAVLdQEFXkCUhpRSlGgVTegDaBZHQHuRr8aXKKZ1fZQoaAZoCWgPQwhBLJs5JCpbQJSGlFKUaBVN6ANoFkdAe5QsxO+IuXV9lChoBmgJaA9DCIz2eCEdHvc/lIaUUpRoFUt2aBZHQHuevReC04R1fZQoaAZoCWgPQwjgnudPmz9iQJSGlFKUaBVN6ANoFkdAe7BKziS7oXV9lChoBmgJaA9DCMRdvYqMZ19AlIaUUpRoFU3oA2gWR0B7uqHM2WIHdX2UKGgGaAloD0MI+WpHcY5ZX0CUhpRSlGgVTegDaBZHQHu/0GiYb851fZQoaAZoCWgPQwgdzCbAsPBHQJSGlFKUaBVL8GgWR0B7xmVlf7aadX2UKGgGaAloD0MIPSe9b3ynZECUhpRSlGgVTegDaBZHQHwcEm+j/Mp1fZQoaAZoCWgPQwjlmgKZnR07QJSGlFKUaBVLqmgWR0B8Ll37k4m1dX2UKGgGaAloD0MIceSByCLdVECUhpRSlGgVTegDaBZHQHwx50fYBeZ1fZQoaAZoCWgPQwjbMXVXdoNDQJSGlFKUaBVLiGgWR0B8Mph4MWoFdX2UKGgGaAloD0MIXI3sSsuQIcCUhpRSlGgVS+poFkdAfDMU5dWyT3V9lChoBmgJaA9DCPBsj95wdmJAlIaUUpRoFU3oA2gWR0B8T7RTjvNNdX2UKGgGaAloD0MI76mc9pRVXUCUhpRSlGgVTegDaBZHQHxaIwRGtp51fZQoaAZoCWgPQwhMjGX6Ja4xQJSGlFKUaBVLuWgWR0B8YOy1NQCTdX2UKGgGaAloD0MIowVoW83RVUCUhpRSlGgVTegDaBZHQHxpyQo1DSh1fZQoaAZoCWgPQwjwiXWq/MFgQJSGlFKUaBVN6ANoFkdAfG+07r9l3HV9lChoBmgJaA9DCGxB740hgWFAlIaUUpRoFU3oA2gWR0B8hQ5ZKWcCdX2UKGgGaAloD0MI4biMmxq6Q0CUhpRSlGgVS+5oFkdAfIrvCMxXXHV9lChoBmgJaA9DCKn3VE57b2JAlIaUUpRoFU3oA2gWR0B8l421lXijdX2UKGgGaAloD0MIa0jcY+lqXkCUhpRSlGgVTegDaBZHQHy7W8h9srN1fZQoaAZoCWgPQwgz3IDPjydjQJSGlFKUaBVN6ANoFkdAfMZJZGKAKHV9lChoBmgJaA9DCBdhinJpKF5AlIaUUpRoFU3oA2gWR0B80TYAbQ1KdX2UKGgGaAloD0MIgH106sp1TkCUhpRSlGgVS/VoFkdAfNVQtBfKIXV9lChoBmgJaA9DCImWPJ4WAmNAlIaUUpRoFU3oA2gWR0B83SAoXsPbdX2UKGgGaAloD0MISkIibeMrO8CUhpRSlGgVS49oFkdAfP70Cih37nV9lChoBmgJaA9DCF+Zt+q6TmJAlIaUUpRoFU3oA2gWR0B9AEYHgP3BdX2UKGgGaAloD0MITpoGRfM1WUCUhpRSlGgVTegDaBZHQH1dRZZB9kV1fZQoaAZoCWgPQwggskgT71phQJSGlFKUaBVN6ANoFkdAfXAT2FnIyXV9lChoBmgJaA9DCKA3FamwVWRAlIaUUpRoFU3oA2gWR0B9c2M3qAz6dX2UKGgGaAloD0MI24toO6bCX0CUhpRSlGgVTegDaBZHQH10eVs1sLx1fZQoaAZoCWgPQwjJrx9iA3pkQJSGlFKUaBVN6ANoFkdAfZYvw3HaOHV9lChoBmgJaA9DCN1fPe7bhmNAlIaUUpRoFU3oA2gWR0B9nGA4GUwBdX2UKGgGaAloD0MIe9l22ppOYkCUhpRSlGgVTegDaBZHQH2kPc32mHh1fZQoaAZoCWgPQwhd+pekMrUmQJSGlFKUaBVL2mgWR0B9pELDye7MdX2UKGgGaAloD0MIM8NGWb9nRECUhpRSlGgVS/xoFkdAfadHHWBjF3V9lChoBmgJaA9DCJ/KaU/JW2NAlIaUUpRoFU3oA2gWR0B9qR5Qgs9TdX2UKGgGaAloD0MI5zdMNEivXECUhpRSlGgVTegDaBZHQH255mNBF/h1fZQoaAZoCWgPQwge/pqsUUxfQJSGlFKUaBVN6ANoFkdAfb7H1vl2eXV9lChoBmgJaA9DCIxoO6buGhlAlIaUUpRoFUuZaBZHQH3E3dXT3Ix1fZQoaAZoCWgPQwh4mPbN/b1gQJSGlFKUaBVN6ANoFkdAfefnkDIRy3V9lChoBmgJaA9DCJ7PgHqzzGBAlIaUUpRoFU3oA2gWR0B98fWjGkvcdX2UKGgGaAloD0MIhGdCk8TZXUCUhpRSlGgVTegDaBZHQH36+Cwr1/V1fZQoaAZoCWgPQwhnCp3XWGliQJSGlFKUaBVN6ANoFkdAff7GxD9fkXV9lChoBmgJaA9DCHXIzXADjWNAlIaUUpRoFU3oA2gWR0B+I9aJQ+EAdX2UKGgGaAloD0MINBKhEWyZV0CUhpRSlGgVTegDaBZHQH4k74agmJF1fZQoaAZoCWgPQwhO8E3TZ18wQJSGlFKUaBVL2mgWR0B+KJiDujREdX2UKGgGaAloD0MI9pUH6Sk4ZECUhpRSlGgVTegDaBZHQH4zxXfZVXF1fZQoaAZoCWgPQwhq+uyAa8ZjQJSGlFKUaBVN6ANoFkdAfpH2dd3Sr3V9lChoBmgJaA9DCIo5CDpaeTJAlIaUUpRoFUuUaBZHQH6S8+JP69F1fZQoaAZoCWgPQwg1CHO7l8M5QJSGlFKUaBVL2WgWR0B+nZqEeyRkdX2UKGgGaAloD0MIR1oqb0d/akCUhpRSlGgVTRQCaBZHQH6kfZElVtJ1fZQoaAZoCWgPQwgLKT+pdtJkQJSGlFKUaBVN6ANoFkdAfrTP9kz413V9lChoBmgJaA9DCIfddwwPx2NAlIaUUpRoFU3oA2gWR0B+usBV+7UYdX2UKGgGaAloD0MIck2BzE7bY0CUhpRSlGgVTegDaBZHQH7CiJbdJrd1fZQoaAZoCWgPQwiSzyueerxiQJSGlFKUaBVN6ANoFkdAfsKR3NcGDHV9lChoBmgJaA9DCNnr3R/vIF5AlIaUUpRoFU3oA2gWR0B+x2Fj/dZadX2UKGgGaAloD0MIRwINNnXOJ0CUhpRSlGgVTQ0BaBZHQH7MHBciW3V1fZQoaAZoCWgPQwieflAXqWFiQJSGlFKUaBVN6ANoFkdAfteNKyv9tXV9lChoBmgJaA9DCC6p2m4CDmBAlIaUUpRoFU3oA2gWR0B+2/YzzmOmdX2UKGgGaAloD0MInfLoRlgGZECUhpRSlGgVTegDaBZHQH7h03fhuO11fZQoaAZoCWgPQwjtRElIpHEwQJSGlFKUaBVLvmgWR0B+5b3i704BdX2UKGgGaAloD0MIHauUnulhO0CUhpRSlGgVS/5oFkdAfurvDP4VRHV9lChoBmgJaA9DCM11GmmphD/AlIaUUpRoFUv6aBZHQH7wlLvkRz11fZQoaAZoCWgPQwgKavgW1sFOQJSGlFKUaBVL7mgWR0B+8rPhQ3xXdX2UKGgGaAloD0MItOVciiveZUCUhpRSlGgVTegDaBZHQH8H3I6r/851fZQoaAZoCWgPQwig/UgRGapHQJSGlFKUaBVLy2gWR0B/EiIznA6/dX2UKGgGaAloD0MIxVc7inO/YUCUhpRSlGgVTegDaBZHQH8UlDWsijd1fZQoaAZoCWgPQwgIOlrVkjo3QJSGlFKUaBVL1GgWR0B/NVXYDklvdX2UKGgGaAloD0MIhZhLqjZ4YUCUhpRSlGgVTegDaBZHQH87VCTlkpZ1fZQoaAZoCWgPQwi4XP3YJNM3QJSGlFKUaBVL2mgWR0B/QeQYDTz/dX2UKGgGaAloD0MIcuFASBYQIECUhpRSlGgVS9JoFkdAf0KP2PDHfnV9lChoBmgJaA9DCDI9YYkHXF9AlIaUUpRoFU3oA2gWR0B/S90dRzikdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0fd62d6d6fda9975cf44ddf84b024400db025a64b1af9828b7287072958775ac
|
3 |
+
size 144008
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5025ebc5f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5025ebc680>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5025ebc710>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5025ebc7a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5025ebc830>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5025ebc8c0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5025ebc950>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5025ebc9e0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5025ebca70>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5025ebcb00>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5025ebcb90>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f5025f0a660>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652034207.7962823,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACBrvj6PVjM/XvsnPORt/L6A9VA+f+DFvQAAAAAAAAAAzWRtuylEbLrjbdy66+BDtg7w7zqWPfw5AACAPwAAgD+aqB29XBsGuigrgLtA1dk36rpJuyKeNjoAAIA/AACAP2b+pj1cy166DumNO3dZkjZyCJe6hS+jugAAgD8AAIA/bdMGPuFwubqyyiW8+oRJOPMXUrrSihw5AACAPwAAgD/NUuW8rumButlMLzxrJ361S1b8uUuLbLQAAIA/AACAPwDuQj3Xo325tVEGPJvqajZ7loU7AhhqNQAAgD8AAIA/ptqtPVwTR7oxYza7VezRtU6AyjrYilQ6AACAPwAAgD/t4mg+uPf5u95ikDshthy5bO5kvf6Cp7oAAIA/AACAPxZ6U76dgt4+Fty1uuP+Pb563Lm9rjWtvQAAAAAAAAAAOgQKvqRpHbuBVDc74RDCvLw0dzyqHag9AACAPwAAAAAtvge+kTQlPw6LSD16vKW+A/OwvbbbrDwAAAAAAAAAAAC1pj2UcUw/pmJrPXOv874a1Hc9jiabvQAAAAAAAAAAJkGEPVzbBrqeOdm5f6iBtsgGWDumX/A1AACAPwAAgD9GE4U+xUNmPxVR1j7n6yi/qQaSPiG6jj0AAAAAAAAAAA2ooD2PVj669VzDumYimbZufW45TdLeOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVYxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITb9EvHVYY0CUhpRSlIwBbJRN6AOMAXSUR0B6PP655JK8dX2UKGgGaAloD0MI63JKQEzuWECUhpRSlGgVTegDaBZHQHpI/wuuiex1fZQoaAZoCWgPQwhI+Um1zz5jQJSGlFKUaBVN6ANoFkdAelELQXyiEnV9lChoBmgJaA9DCFGlZg+0q2BAlIaUUpRoFU3oA2gWR0B6VmdjG1hLdX2UKGgGaAloD0MIzy7f+jCIY0CUhpRSlGgVTegDaBZHQHpcCMDOkcl1fZQoaAZoCWgPQwiHpuz0g0xgQJSGlFKUaBVN6ANoFkdAel/SfDk2gnV9lChoBmgJaA9DCOBNt+wQ2zVAlIaUUpRoFUuZaBZHQHpqpkf9xZN1fZQoaAZoCWgPQwiGWP0RhjVuQJSGlFKUaBVNlwFoFkdAemzk8A7xNXV9lChoBmgJaA9DCM9pFmj3sGNAlIaUUpRoFU3oA2gWR0B6dDR/mT1TdX2UKGgGaAloD0MIzo3pCUtkO0CUhpRSlGgVS/FoFkdAeofdWhh6SnV9lChoBmgJaA9DCIPeG0MAIC7AlIaUUpRoFU01AWgWR0B6kb5+H8CQdX2UKGgGaAloD0MIAWn/A6xNY0CUhpRSlGgVTegDaBZHQHqUV2icoYx1fZQoaAZoCWgPQwiDTZ1HxalDwJSGlFKUaBVLpGgWR0B6llN9H+ZPdX2UKGgGaAloD0MIEDy+vevPZECUhpRSlGgVTegDaBZHQHrx2tITXat1fZQoaAZoCWgPQwj8OQX5Wd1gQJSGlFKUaBVN6ANoFkdAewZ/p+tr9HV9lChoBmgJaA9DCGr4FtaNhzVAlIaUUpRoFUu9aBZHQHsKVo11nul1fZQoaAZoCWgPQwj4GRcOhKBgQJSGlFKUaBVN6ANoFkdAeyL/Q0GeMHV9lChoBmgJaA9DCOiGpuz0Z1RAlIaUUpRoFU3oA2gWR0B7LG+8Gs3idX2UKGgGaAloD0MIOZz51ZwhY0CUhpRSlGgVTegDaBZHQHs6YsiB5HF1fZQoaAZoCWgPQwh7Z7RVyS5kQJSGlFKUaBVN6ANoFkdAez6wW3z+WHV9lChoBmgJaA9DCDrObcI9R21AlIaUUpRoFUvmaBZHQHs/hzq8lHB1fZQoaAZoCWgPQwiAft+/eYRRQJSGlFKUaBVN6ANoFkdAe1E1s+FDfHV9lChoBmgJaA9DCFJjQswltRDAlIaUUpRoFUuoaBZHQHtg+scQyyl1fZQoaAZoCWgPQwidDmQ9tdFeQJSGlFKUaBVN6ANoFkdAe2RhakhzNnV9lChoBmgJaA9DCNI1k282kmFAlIaUUpRoFU3oA2gWR0B7gZC6Ymb9dX2UKGgGaAloD0MIPneC/VepYUCUhpRSlGgVTegDaBZHQHuFyx3V0911fZQoaAZoCWgPQwjIJ2TnbcwFwJSGlFKUaBVLqWgWR0B7is5aNdZ8dX2UKGgGaAloD0MIuAVLdQEFXkCUhpRSlGgVTegDaBZHQHuRr8aXKKZ1fZQoaAZoCWgPQwhBLJs5JCpbQJSGlFKUaBVN6ANoFkdAe5QsxO+IuXV9lChoBmgJaA9DCIz2eCEdHvc/lIaUUpRoFUt2aBZHQHuevReC04R1fZQoaAZoCWgPQwjgnudPmz9iQJSGlFKUaBVN6ANoFkdAe7BKziS7oXV9lChoBmgJaA9DCMRdvYqMZ19AlIaUUpRoFU3oA2gWR0B7uqHM2WIHdX2UKGgGaAloD0MI+WpHcY5ZX0CUhpRSlGgVTegDaBZHQHu/0GiYb851fZQoaAZoCWgPQwgdzCbAsPBHQJSGlFKUaBVL8GgWR0B7xmVlf7aadX2UKGgGaAloD0MIPSe9b3ynZECUhpRSlGgVTegDaBZHQHwcEm+j/Mp1fZQoaAZoCWgPQwjlmgKZnR07QJSGlFKUaBVLqmgWR0B8Ll37k4m1dX2UKGgGaAloD0MIceSByCLdVECUhpRSlGgVTegDaBZHQHwx50fYBeZ1fZQoaAZoCWgPQwjbMXVXdoNDQJSGlFKUaBVLiGgWR0B8Mph4MWoFdX2UKGgGaAloD0MIXI3sSsuQIcCUhpRSlGgVS+poFkdAfDMU5dWyT3V9lChoBmgJaA9DCPBsj95wdmJAlIaUUpRoFU3oA2gWR0B8T7RTjvNNdX2UKGgGaAloD0MI76mc9pRVXUCUhpRSlGgVTegDaBZHQHxaIwRGtp51fZQoaAZoCWgPQwhMjGX6Ja4xQJSGlFKUaBVLuWgWR0B8YOy1NQCTdX2UKGgGaAloD0MIowVoW83RVUCUhpRSlGgVTegDaBZHQHxpyQo1DSh1fZQoaAZoCWgPQwjwiXWq/MFgQJSGlFKUaBVN6ANoFkdAfG+07r9l3HV9lChoBmgJaA9DCGxB740hgWFAlIaUUpRoFU3oA2gWR0B8hQ5ZKWcCdX2UKGgGaAloD0MI4biMmxq6Q0CUhpRSlGgVS+5oFkdAfIrvCMxXXHV9lChoBmgJaA9DCKn3VE57b2JAlIaUUpRoFU3oA2gWR0B8l421lXijdX2UKGgGaAloD0MIa0jcY+lqXkCUhpRSlGgVTegDaBZHQHy7W8h9srN1fZQoaAZoCWgPQwgz3IDPjydjQJSGlFKUaBVN6ANoFkdAfMZJZGKAKHV9lChoBmgJaA9DCBdhinJpKF5AlIaUUpRoFU3oA2gWR0B80TYAbQ1KdX2UKGgGaAloD0MIgH106sp1TkCUhpRSlGgVS/VoFkdAfNVQtBfKIXV9lChoBmgJaA9DCImWPJ4WAmNAlIaUUpRoFU3oA2gWR0B83SAoXsPbdX2UKGgGaAloD0MISkIibeMrO8CUhpRSlGgVS49oFkdAfP70Cih37nV9lChoBmgJaA9DCF+Zt+q6TmJAlIaUUpRoFU3oA2gWR0B9AEYHgP3BdX2UKGgGaAloD0MITpoGRfM1WUCUhpRSlGgVTegDaBZHQH1dRZZB9kV1fZQoaAZoCWgPQwggskgT71phQJSGlFKUaBVN6ANoFkdAfXAT2FnIyXV9lChoBmgJaA9DCKA3FamwVWRAlIaUUpRoFU3oA2gWR0B9c2M3qAz6dX2UKGgGaAloD0MI24toO6bCX0CUhpRSlGgVTegDaBZHQH10eVs1sLx1fZQoaAZoCWgPQwjJrx9iA3pkQJSGlFKUaBVN6ANoFkdAfZYvw3HaOHV9lChoBmgJaA9DCN1fPe7bhmNAlIaUUpRoFU3oA2gWR0B9nGA4GUwBdX2UKGgGaAloD0MIe9l22ppOYkCUhpRSlGgVTegDaBZHQH2kPc32mHh1fZQoaAZoCWgPQwhd+pekMrUmQJSGlFKUaBVL2mgWR0B9pELDye7MdX2UKGgGaAloD0MIM8NGWb9nRECUhpRSlGgVS/xoFkdAfadHHWBjF3V9lChoBmgJaA9DCJ/KaU/JW2NAlIaUUpRoFU3oA2gWR0B9qR5Qgs9TdX2UKGgGaAloD0MI5zdMNEivXECUhpRSlGgVTegDaBZHQH255mNBF/h1fZQoaAZoCWgPQwge/pqsUUxfQJSGlFKUaBVN6ANoFkdAfb7H1vl2eXV9lChoBmgJaA9DCIxoO6buGhlAlIaUUpRoFUuZaBZHQH3E3dXT3Ix1fZQoaAZoCWgPQwh4mPbN/b1gQJSGlFKUaBVN6ANoFkdAfefnkDIRy3V9lChoBmgJaA9DCJ7PgHqzzGBAlIaUUpRoFU3oA2gWR0B98fWjGkvcdX2UKGgGaAloD0MIhGdCk8TZXUCUhpRSlGgVTegDaBZHQH36+Cwr1/V1fZQoaAZoCWgPQwhnCp3XWGliQJSGlFKUaBVN6ANoFkdAff7GxD9fkXV9lChoBmgJaA9DCHXIzXADjWNAlIaUUpRoFU3oA2gWR0B+I9aJQ+EAdX2UKGgGaAloD0MINBKhEWyZV0CUhpRSlGgVTegDaBZHQH4k74agmJF1fZQoaAZoCWgPQwhO8E3TZ18wQJSGlFKUaBVL2mgWR0B+KJiDujREdX2UKGgGaAloD0MI9pUH6Sk4ZECUhpRSlGgVTegDaBZHQH4zxXfZVXF1fZQoaAZoCWgPQwhq+uyAa8ZjQJSGlFKUaBVN6ANoFkdAfpH2dd3Sr3V9lChoBmgJaA9DCIo5CDpaeTJAlIaUUpRoFUuUaBZHQH6S8+JP69F1fZQoaAZoCWgPQwg1CHO7l8M5QJSGlFKUaBVL2WgWR0B+nZqEeyRkdX2UKGgGaAloD0MIR1oqb0d/akCUhpRSlGgVTRQCaBZHQH6kfZElVtJ1fZQoaAZoCWgPQwgLKT+pdtJkQJSGlFKUaBVN6ANoFkdAfrTP9kz413V9lChoBmgJaA9DCIfddwwPx2NAlIaUUpRoFU3oA2gWR0B+usBV+7UYdX2UKGgGaAloD0MIck2BzE7bY0CUhpRSlGgVTegDaBZHQH7CiJbdJrd1fZQoaAZoCWgPQwiSzyueerxiQJSGlFKUaBVN6ANoFkdAfsKR3NcGDHV9lChoBmgJaA9DCNnr3R/vIF5AlIaUUpRoFU3oA2gWR0B+x2Fj/dZadX2UKGgGaAloD0MIRwINNnXOJ0CUhpRSlGgVTQ0BaBZHQH7MHBciW3V1fZQoaAZoCWgPQwieflAXqWFiQJSGlFKUaBVN6ANoFkdAfteNKyv9tXV9lChoBmgJaA9DCC6p2m4CDmBAlIaUUpRoFU3oA2gWR0B+2/YzzmOmdX2UKGgGaAloD0MInfLoRlgGZECUhpRSlGgVTegDaBZHQH7h03fhuO11fZQoaAZoCWgPQwjtRElIpHEwQJSGlFKUaBVLvmgWR0B+5b3i704BdX2UKGgGaAloD0MIHauUnulhO0CUhpRSlGgVS/5oFkdAfurvDP4VRHV9lChoBmgJaA9DCM11GmmphD/AlIaUUpRoFUv6aBZHQH7wlLvkRz11fZQoaAZoCWgPQwgKavgW1sFOQJSGlFKUaBVL7mgWR0B+8rPhQ3xXdX2UKGgGaAloD0MItOVciiveZUCUhpRSlGgVTegDaBZHQH8H3I6r/851fZQoaAZoCWgPQwig/UgRGapHQJSGlFKUaBVLy2gWR0B/EiIznA6/dX2UKGgGaAloD0MIxVc7inO/YUCUhpRSlGgVTegDaBZHQH8UlDWsijd1fZQoaAZoCWgPQwgIOlrVkjo3QJSGlFKUaBVL1GgWR0B/NVXYDklvdX2UKGgGaAloD0MIhZhLqjZ4YUCUhpRSlGgVTegDaBZHQH87VCTlkpZ1fZQoaAZoCWgPQwi4XP3YJNM3QJSGlFKUaBVL2mgWR0B/QeQYDTz/dX2UKGgGaAloD0MIcuFASBYQIECUhpRSlGgVS9JoFkdAf0KP2PDHfnV9lChoBmgJaA9DCDI9YYkHXF9AlIaUUpRoFU3oA2gWR0B/S90dRzikdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:194f7826b0e240256065d9a32adceae33c892e722a69ca9d8efba02bc2edc97e
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16b7be185e753a4efec6bc8e2e00d796da273e74810ef72fc0f6c0c2eda2c0f2
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4166274e4b34923dbcb17d1e51b5a00332ead10770e90377672a429f66af39d1
|
3 |
+
size 219688
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 171.66400812460643, "std_reward": 105.58912505251453, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-08T18:32:36.843023"}
|