Upload merge.py
Browse files
merge.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import json
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
4 |
+
from datasets import load_dataset
|
5 |
+
from peft import LoraConfig, PeftModel
|
6 |
+
|
7 |
+
device_map = "auto"
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(
|
9 |
+
"/path/to/meta-llama3-8b",
|
10 |
+
#low_cpu_mem_usage=True,
|
11 |
+
return_dict=True,
|
12 |
+
torch_dtype=torch.float16,
|
13 |
+
device_map=device_map,
|
14 |
+
)
|
15 |
+
|
16 |
+
model = PeftModel.from_pretrained(model, "/path/to/llama3-8b-adapter", device_map=device_map)
|
17 |
+
model = model.merge_and_unload()
|
18 |
+
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained("/path/to/meta-llama3-8b", trust_remote_code=True)
|
20 |
+
tokenizer.pad_token_id = 18610
|
21 |
+
|
22 |
+
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=4096, do_sample=False)
|
23 |
+
print("Padding side:",tokenizer.padding_side)
|
24 |
+
val_dataset = load_dataset("csv", data_files={'val':'/path/to/actseq-val-new.csv'})["val"]
|
25 |
+
test_dataset = load_dataset("csv", data_files={'test':'/path/to/actseq-test-new.csv'})["test"]
|
26 |
+
|
27 |
+
|
28 |
+
def formatting_prompts_func(example):
|
29 |
+
output_texts = []
|
30 |
+
for i in range(len(example['dial_with_actions'])):
|
31 |
+
text = f"Predict the action sequence (AS) for the Minecraft excerpt:\n {example['dial_with_actions'][i]}\n ### AS:"
|
32 |
+
output_texts.append(text)
|
33 |
+
return output_texts
|
34 |
+
|
35 |
+
|
36 |
+
val_texts = formatting_prompts_func(val_dataset)
|
37 |
+
test_texts = formatting_prompts_func(test_dataset)
|
38 |
+
|
39 |
+
print("Val Length:", len(val_texts))
|
40 |
+
print("Test Length:", len(test_texts))
|
41 |
+
|
42 |
+
f = open("/path/to/val-output-file","w")
|
43 |
+
|
44 |
+
for text in val_texts:
|
45 |
+
print(text)
|
46 |
+
print(pipe(text)[0]["generated_text"], file=f)
|
47 |
+
|
48 |
+
f.close()
|
49 |
+
|
50 |
+
f = open("/path/to/test-output-file","w")
|
51 |
+
|
52 |
+
for text in test_texts:
|
53 |
+
print(text)
|
54 |
+
print(pipe(text)[0]["generated_text"], file=f)
|
55 |
+
|
56 |
+
f.close()
|