Model save
Browse files- README.md +58 -0
- all_results.json +8 -0
- generation_config.json +14 -0
- train_results.json +8 -0
- trainer_state.json +99 -0
README.md
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: Qwen/Qwen2.5-Coder-3B-Instruct
|
3 |
+
library_name: transformers
|
4 |
+
model_name: oR1-Qwen-Coder-3B-Agentic-e4-lr5-b8
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
- trl
|
8 |
+
- sft
|
9 |
+
licence: license
|
10 |
+
---
|
11 |
+
|
12 |
+
# Model Card for oR1-Qwen-Coder-3B-Agentic-e4-lr5-b8
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-3B-Instruct).
|
15 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
16 |
+
|
17 |
+
## Quick start
|
18 |
+
|
19 |
+
```python
|
20 |
+
from transformers import pipeline
|
21 |
+
|
22 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
23 |
+
generator = pipeline("text-generation", model="akseljoonas/oR1-Qwen-Coder-3B-Agentic-e4-lr5-b8", device="cuda")
|
24 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
25 |
+
print(output["generated_text"])
|
26 |
+
```
|
27 |
+
|
28 |
+
## Training procedure
|
29 |
+
|
30 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/akseljoonas-university-of-groningen/huggingface/runs/ng2v73fx)
|
31 |
+
|
32 |
+
|
33 |
+
This model was trained with SFT.
|
34 |
+
|
35 |
+
### Framework versions
|
36 |
+
|
37 |
+
- TRL: 0.16.0
|
38 |
+
- Transformers: 4.50.0
|
39 |
+
- Pytorch: 2.6.0
|
40 |
+
- Datasets: 3.5.0
|
41 |
+
- Tokenizers: 0.21.1
|
42 |
+
|
43 |
+
## Citations
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
Cite TRL as:
|
48 |
+
|
49 |
+
```bibtex
|
50 |
+
@misc{vonwerra2022trl,
|
51 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
52 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
53 |
+
year = 2020,
|
54 |
+
journal = {GitHub repository},
|
55 |
+
publisher = {GitHub},
|
56 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
57 |
+
}
|
58 |
+
```
|
all_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 22955630264320.0,
|
3 |
+
"train_loss": 0.8402301967144012,
|
4 |
+
"train_runtime": 202.7562,
|
5 |
+
"train_samples": 1928,
|
6 |
+
"train_samples_per_second": 10.633,
|
7 |
+
"train_steps_per_second": 0.158
|
8 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.05,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.50.0"
|
14 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 22955630264320.0,
|
3 |
+
"train_loss": 0.8402301967144012,
|
4 |
+
"train_runtime": 202.7562,
|
5 |
+
"train_samples": 1928,
|
6 |
+
"train_samples_per_second": 10.633,
|
7 |
+
"train_steps_per_second": 0.158
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_global_step": null,
|
3 |
+
"best_metric": null,
|
4 |
+
"best_model_checkpoint": null,
|
5 |
+
"epoch": 3.588235294117647,
|
6 |
+
"eval_steps": 500,
|
7 |
+
"global_step": 32,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"epoch": 0.5882352941176471,
|
14 |
+
"grad_norm": 0.7869846357918158,
|
15 |
+
"learning_rate": 4.8214285714285716e-05,
|
16 |
+
"loss": 1.1594,
|
17 |
+
"mean_token_accuracy": 0.7533773094415664,
|
18 |
+
"num_tokens": 2505918.0,
|
19 |
+
"step": 5
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"epoch": 1.1176470588235294,
|
23 |
+
"grad_norm": 0.7283705538721326,
|
24 |
+
"learning_rate": 3.928571428571429e-05,
|
25 |
+
"loss": 0.9727,
|
26 |
+
"mean_token_accuracy": 0.7840807305441962,
|
27 |
+
"num_tokens": 4791423.0,
|
28 |
+
"step": 10
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"epoch": 1.7058823529411766,
|
32 |
+
"grad_norm": 0.29849651744475264,
|
33 |
+
"learning_rate": 3.0357142857142857e-05,
|
34 |
+
"loss": 0.8064,
|
35 |
+
"mean_token_accuracy": 0.8134194314479828,
|
36 |
+
"num_tokens": 7330272.0,
|
37 |
+
"step": 15
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 2.235294117647059,
|
41 |
+
"grad_norm": 0.2833815146754528,
|
42 |
+
"learning_rate": 2.1428571428571428e-05,
|
43 |
+
"loss": 0.7888,
|
44 |
+
"mean_token_accuracy": 0.8178626464472877,
|
45 |
+
"num_tokens": 9618952.0,
|
46 |
+
"step": 20
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 2.8235294117647056,
|
50 |
+
"grad_norm": 0.24905338345002254,
|
51 |
+
"learning_rate": 1.25e-05,
|
52 |
+
"loss": 0.6827,
|
53 |
+
"mean_token_accuracy": 0.8375016838312149,
|
54 |
+
"num_tokens": 12114377.0,
|
55 |
+
"step": 25
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"epoch": 3.3529411764705883,
|
59 |
+
"grad_norm": 0.2945591740712261,
|
60 |
+
"learning_rate": 3.5714285714285714e-06,
|
61 |
+
"loss": 0.6889,
|
62 |
+
"mean_token_accuracy": 0.8388072550296783,
|
63 |
+
"num_tokens": 14409009.0,
|
64 |
+
"step": 30
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"epoch": 3.588235294117647,
|
68 |
+
"mean_token_accuracy": 0.8461483642458916,
|
69 |
+
"num_tokens": 15425424.0,
|
70 |
+
"step": 32,
|
71 |
+
"total_flos": 22955630264320.0,
|
72 |
+
"train_loss": 0.8402301967144012,
|
73 |
+
"train_runtime": 202.7562,
|
74 |
+
"train_samples_per_second": 10.633,
|
75 |
+
"train_steps_per_second": 0.158
|
76 |
+
}
|
77 |
+
],
|
78 |
+
"logging_steps": 5,
|
79 |
+
"max_steps": 32,
|
80 |
+
"num_input_tokens_seen": 0,
|
81 |
+
"num_train_epochs": 4,
|
82 |
+
"save_steps": 500,
|
83 |
+
"stateful_callbacks": {
|
84 |
+
"TrainerControl": {
|
85 |
+
"args": {
|
86 |
+
"should_epoch_stop": false,
|
87 |
+
"should_evaluate": false,
|
88 |
+
"should_log": false,
|
89 |
+
"should_save": true,
|
90 |
+
"should_training_stop": true
|
91 |
+
},
|
92 |
+
"attributes": {}
|
93 |
+
}
|
94 |
+
},
|
95 |
+
"total_flos": 22955630264320.0,
|
96 |
+
"train_batch_size": 2,
|
97 |
+
"trial_name": null,
|
98 |
+
"trial_params": null
|
99 |
+
}
|