akseljoonas HF Staff commited on
Commit
1c08805
·
verified ·
1 Parent(s): e6c2337

Model save

Browse files
README.md ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-Coder-3B-Instruct
3
+ library_name: transformers
4
+ model_name: oR1-Qwen-Coder-3B-Agentic-e4-lr5-b8
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - sft
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for oR1-Qwen-Coder-3B-Agentic-e4-lr5-b8
13
+
14
+ This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-3B-Instruct).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="akseljoonas/oR1-Qwen-Coder-3B-Agentic-e4-lr5-b8", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/akseljoonas-university-of-groningen/huggingface/runs/ng2v73fx)
31
+
32
+
33
+ This model was trained with SFT.
34
+
35
+ ### Framework versions
36
+
37
+ - TRL: 0.16.0
38
+ - Transformers: 4.50.0
39
+ - Pytorch: 2.6.0
40
+ - Datasets: 3.5.0
41
+ - Tokenizers: 0.21.1
42
+
43
+ ## Citations
44
+
45
+
46
+
47
+ Cite TRL as:
48
+
49
+ ```bibtex
50
+ @misc{vonwerra2022trl,
51
+ title = {{TRL: Transformer Reinforcement Learning}},
52
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
53
+ year = 2020,
54
+ journal = {GitHub repository},
55
+ publisher = {GitHub},
56
+ howpublished = {\url{https://github.com/huggingface/trl}}
57
+ }
58
+ ```
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 22955630264320.0,
3
+ "train_loss": 0.8402301967144012,
4
+ "train_runtime": 202.7562,
5
+ "train_samples": 1928,
6
+ "train_samples_per_second": 10.633,
7
+ "train_steps_per_second": 0.158
8
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.50.0"
14
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 22955630264320.0,
3
+ "train_loss": 0.8402301967144012,
4
+ "train_runtime": 202.7562,
5
+ "train_samples": 1928,
6
+ "train_samples_per_second": 10.633,
7
+ "train_steps_per_second": 0.158
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 3.588235294117647,
6
+ "eval_steps": 500,
7
+ "global_step": 32,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.5882352941176471,
14
+ "grad_norm": 0.7869846357918158,
15
+ "learning_rate": 4.8214285714285716e-05,
16
+ "loss": 1.1594,
17
+ "mean_token_accuracy": 0.7533773094415664,
18
+ "num_tokens": 2505918.0,
19
+ "step": 5
20
+ },
21
+ {
22
+ "epoch": 1.1176470588235294,
23
+ "grad_norm": 0.7283705538721326,
24
+ "learning_rate": 3.928571428571429e-05,
25
+ "loss": 0.9727,
26
+ "mean_token_accuracy": 0.7840807305441962,
27
+ "num_tokens": 4791423.0,
28
+ "step": 10
29
+ },
30
+ {
31
+ "epoch": 1.7058823529411766,
32
+ "grad_norm": 0.29849651744475264,
33
+ "learning_rate": 3.0357142857142857e-05,
34
+ "loss": 0.8064,
35
+ "mean_token_accuracy": 0.8134194314479828,
36
+ "num_tokens": 7330272.0,
37
+ "step": 15
38
+ },
39
+ {
40
+ "epoch": 2.235294117647059,
41
+ "grad_norm": 0.2833815146754528,
42
+ "learning_rate": 2.1428571428571428e-05,
43
+ "loss": 0.7888,
44
+ "mean_token_accuracy": 0.8178626464472877,
45
+ "num_tokens": 9618952.0,
46
+ "step": 20
47
+ },
48
+ {
49
+ "epoch": 2.8235294117647056,
50
+ "grad_norm": 0.24905338345002254,
51
+ "learning_rate": 1.25e-05,
52
+ "loss": 0.6827,
53
+ "mean_token_accuracy": 0.8375016838312149,
54
+ "num_tokens": 12114377.0,
55
+ "step": 25
56
+ },
57
+ {
58
+ "epoch": 3.3529411764705883,
59
+ "grad_norm": 0.2945591740712261,
60
+ "learning_rate": 3.5714285714285714e-06,
61
+ "loss": 0.6889,
62
+ "mean_token_accuracy": 0.8388072550296783,
63
+ "num_tokens": 14409009.0,
64
+ "step": 30
65
+ },
66
+ {
67
+ "epoch": 3.588235294117647,
68
+ "mean_token_accuracy": 0.8461483642458916,
69
+ "num_tokens": 15425424.0,
70
+ "step": 32,
71
+ "total_flos": 22955630264320.0,
72
+ "train_loss": 0.8402301967144012,
73
+ "train_runtime": 202.7562,
74
+ "train_samples_per_second": 10.633,
75
+ "train_steps_per_second": 0.158
76
+ }
77
+ ],
78
+ "logging_steps": 5,
79
+ "max_steps": 32,
80
+ "num_input_tokens_seen": 0,
81
+ "num_train_epochs": 4,
82
+ "save_steps": 500,
83
+ "stateful_callbacks": {
84
+ "TrainerControl": {
85
+ "args": {
86
+ "should_epoch_stop": false,
87
+ "should_evaluate": false,
88
+ "should_log": false,
89
+ "should_save": true,
90
+ "should_training_stop": true
91
+ },
92
+ "attributes": {}
93
+ }
94
+ },
95
+ "total_flos": 22955630264320.0,
96
+ "train_batch_size": 2,
97
+ "trial_name": null,
98
+ "trial_params": null
99
+ }