akseljoonas HF Staff commited on
Commit
0f8d7af
·
verified ·
1 Parent(s): 39c9456

Model save

Browse files
README.md ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-Coder-7B-Instruct
3
+ library_name: transformers
4
+ model_name: oR1-Qwen-7B-Coder-Agentic-e9-lr5-b8
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - sft
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for oR1-Qwen-7B-Coder-Agentic-e9-lr5-b8
13
+
14
+ This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="akseljoonas/oR1-Qwen-7B-Coder-Agentic-e9-lr5-b8", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/akseljoonas-university-of-groningen/huggingface/runs/so6tyny1)
31
+
32
+
33
+ This model was trained with SFT.
34
+
35
+ ### Framework versions
36
+
37
+ - TRL: 0.16.0
38
+ - Transformers: 4.50.0
39
+ - Pytorch: 2.6.0
40
+ - Datasets: 3.5.0
41
+ - Tokenizers: 0.21.1
42
+
43
+ ## Citations
44
+
45
+
46
+
47
+ Cite TRL as:
48
+
49
+ ```bibtex
50
+ @misc{vonwerra2022trl,
51
+ title = {{TRL: Transformer Reinforcement Learning}},
52
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
53
+ year = 2020,
54
+ journal = {GitHub repository},
55
+ publisher = {GitHub},
56
+ howpublished = {\url{https://github.com/huggingface/trl}}
57
+ }
58
+ ```
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 70898833948672.0,
3
+ "train_loss": 0.48625098499986863,
4
+ "train_runtime": 731.1833,
5
+ "train_samples": 1928,
6
+ "train_samples_per_second": 6.634,
7
+ "train_steps_per_second": 0.098
8
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.1,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.50.0"
14
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 70898833948672.0,
3
+ "train_loss": 0.48625098499986863,
4
+ "train_runtime": 731.1833,
5
+ "train_samples": 1928,
6
+ "train_samples_per_second": 6.634,
7
+ "train_steps_per_second": 0.098
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 8.0,
6
+ "eval_steps": 500,
7
+ "global_step": 72,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.5882352941176471,
14
+ "grad_norm": 1.453149383018604,
15
+ "learning_rate": 3.125e-05,
16
+ "loss": 1.1323,
17
+ "mean_token_accuracy": 0.758558577299118,
18
+ "num_tokens": 2505918.0,
19
+ "step": 5
20
+ },
21
+ {
22
+ "epoch": 1.1176470588235294,
23
+ "grad_norm": 0.8843952108301645,
24
+ "learning_rate": 4.8437500000000005e-05,
25
+ "loss": 0.9418,
26
+ "mean_token_accuracy": 0.786483476559321,
27
+ "num_tokens": 4791423.0,
28
+ "step": 10
29
+ },
30
+ {
31
+ "epoch": 1.7058823529411766,
32
+ "grad_norm": 0.35303048389497826,
33
+ "learning_rate": 4.453125e-05,
34
+ "loss": 0.7428,
35
+ "mean_token_accuracy": 0.8249349921941758,
36
+ "num_tokens": 7330272.0,
37
+ "step": 15
38
+ },
39
+ {
40
+ "epoch": 2.235294117647059,
41
+ "grad_norm": 0.3908112032783539,
42
+ "learning_rate": 4.0625000000000005e-05,
43
+ "loss": 0.6935,
44
+ "mean_token_accuracy": 0.8370609614584181,
45
+ "num_tokens": 9618952.0,
46
+ "step": 20
47
+ },
48
+ {
49
+ "epoch": 2.8235294117647056,
50
+ "grad_norm": 0.22079369830396672,
51
+ "learning_rate": 3.671875e-05,
52
+ "loss": 0.5392,
53
+ "mean_token_accuracy": 0.866364911198616,
54
+ "num_tokens": 12114377.0,
55
+ "step": 25
56
+ },
57
+ {
58
+ "epoch": 3.3529411764705883,
59
+ "grad_norm": 0.22167112596094207,
60
+ "learning_rate": 3.2812500000000005e-05,
61
+ "loss": 0.4885,
62
+ "mean_token_accuracy": 0.8808583782778846,
63
+ "num_tokens": 14409009.0,
64
+ "step": 30
65
+ },
66
+ {
67
+ "epoch": 3.9411764705882355,
68
+ "grad_norm": 0.9782959114884348,
69
+ "learning_rate": 2.890625e-05,
70
+ "loss": 0.4183,
71
+ "mean_token_accuracy": 0.8973524689674377,
72
+ "num_tokens": 16918082.0,
73
+ "step": 35
74
+ },
75
+ {
76
+ "epoch": 4.470588235294118,
77
+ "grad_norm": 0.4095276244792195,
78
+ "learning_rate": 2.5e-05,
79
+ "loss": 0.3897,
80
+ "mean_token_accuracy": 0.9068596760431925,
81
+ "num_tokens": 19217454.0,
82
+ "step": 40
83
+ },
84
+ {
85
+ "epoch": 5.0,
86
+ "grad_norm": 0.21972425572371848,
87
+ "learning_rate": 2.109375e-05,
88
+ "loss": 0.2675,
89
+ "mean_token_accuracy": 0.9311207168632083,
90
+ "num_tokens": 21475135.0,
91
+ "step": 45
92
+ },
93
+ {
94
+ "epoch": 5.588235294117647,
95
+ "grad_norm": 0.22803635719329346,
96
+ "learning_rate": 1.71875e-05,
97
+ "loss": 0.2681,
98
+ "mean_token_accuracy": 0.9340837925672532,
99
+ "num_tokens": 23999790.0,
100
+ "step": 50
101
+ },
102
+ {
103
+ "epoch": 6.117647058823529,
104
+ "grad_norm": 0.3459891609100074,
105
+ "learning_rate": 1.3281250000000001e-05,
106
+ "loss": 0.2211,
107
+ "mean_token_accuracy": 0.9482026563750373,
108
+ "num_tokens": 26264984.0,
109
+ "step": 55
110
+ },
111
+ {
112
+ "epoch": 6.705882352941177,
113
+ "grad_norm": 0.2374700982971719,
114
+ "learning_rate": 9.375000000000001e-06,
115
+ "loss": 0.1483,
116
+ "mean_token_accuracy": 0.9612507849931717,
117
+ "num_tokens": 28792279.0,
118
+ "step": 60
119
+ },
120
+ {
121
+ "epoch": 7.235294117647059,
122
+ "grad_norm": 0.276768438905862,
123
+ "learning_rate": 5.46875e-06,
124
+ "loss": 0.2467,
125
+ "mean_token_accuracy": 0.9479848013983833,
126
+ "num_tokens": 31085796.0,
127
+ "step": 65
128
+ },
129
+ {
130
+ "epoch": 7.823529411764706,
131
+ "grad_norm": 0.18403035516539035,
132
+ "learning_rate": 1.5625e-06,
133
+ "loss": 0.1465,
134
+ "mean_token_accuracy": 0.9668508440256118,
135
+ "num_tokens": 33579925.0,
136
+ "step": 70
137
+ },
138
+ {
139
+ "epoch": 8.0,
140
+ "mean_token_accuracy": 0.955658088127772,
141
+ "num_tokens": 34358154.0,
142
+ "step": 72,
143
+ "total_flos": 70898833948672.0,
144
+ "train_loss": 0.48625098499986863,
145
+ "train_runtime": 731.1833,
146
+ "train_samples_per_second": 6.634,
147
+ "train_steps_per_second": 0.098
148
+ }
149
+ ],
150
+ "logging_steps": 5,
151
+ "max_steps": 72,
152
+ "num_input_tokens_seen": 0,
153
+ "num_train_epochs": 9,
154
+ "save_steps": 500,
155
+ "stateful_callbacks": {
156
+ "TrainerControl": {
157
+ "args": {
158
+ "should_epoch_stop": false,
159
+ "should_evaluate": false,
160
+ "should_log": false,
161
+ "should_save": true,
162
+ "should_training_stop": true
163
+ },
164
+ "attributes": {}
165
+ }
166
+ },
167
+ "total_flos": 70898833948672.0,
168
+ "train_batch_size": 2,
169
+ "trial_name": null,
170
+ "trial_params": null
171
+ }